
Expert Systems with Applications 37 (2010) 1471–1493
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
A case study for learning behaviors in mobile robotics by evolutionary
fuzzy systems q

M. Mucientes a,*, J. Alcalá-Fdez b, R. Alcalá b, J. Casillas b

a Department of Electronics and Computer Science, University of Santiago de Compostela, E-15782, Spain
b Department of Computer Science and Artificial Intelligence, University of Granada, E-18071, Spain

a r t i c l e i n f o
Keywords:
Service robots
Data-driven learning algorithms
Evolutionary algorithms
Fuzzy controllers
Design of behaviors
0957-4174/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.eswa.2009.06.095

q Manuel Mucientes is supported by the Ramón y
Ministry of Science and Innovation.

* Corresponding author.
E-mail addresses: manuel.mucientes@usc.es (M.

ugr.es (J. Alcalá-Fdez), alcala@decsai.ugr.es (R. A
(J. Casillas).
a b s t r a c t

Service robots will play an increasing and more important role in the society in the next years. One of the
main challenges is to endow robots with enough autonomy to operate on real environments. To reach
that goal, the design of controllers to solve simple tasks must be automatized. Engineers look for learning
algorithms that are general, robust, require low expertise knowledge, and generate controllers that can
run on the real robot without any tuning stage. In this paper, a framework to learn behaviors (controllers)
in mobile robotics, fulfilling the previous requirements, has been used. The framework is based on two
modules: dataset generation and a data-driven evolutionary-based learning algorithm to obtain fuzzy
controllers. Nevertheless, the design of a fuzzy controller still requires the selection of the type of learning
algorithm, and also to choose the value of some design parameters. In this paper we present an exhaus-
tive study on a set of evolutionary-based data-driven learning algorithms, for learning fuzzy controllers in
mobile robotics, that cover a wide range of the accuracy/interpretability trade-off. The study has also
evaluated the influence of the values of all the design parameters over accuracy and interpretability.
The objective is to analyze the performance of the different algorithms for the design of behaviors in
mobile robotics, and to extract some general rules that can help in the process to design new behaviors.
The analysis comprises two different behaviors (wall-following and moving object following) and more
than 450 tests, both in simulation and on a Pioneer II AT robot. Results have shown very good perfor-
mances in complex and realistic conditions for the different combinations of algorithms and parameters.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays service robots are awaking a greater interest, not
only in the robotics community, but also in the society and the
companies. In the last years, it is not infrequent to read sentences
like ‘‘In 25 years, . . .more than 75% of homes will have at least one
robot regularly performing routine chores” (Angle, 2008), and
these kind of ideas are starting to be considered as plausible. A ser-
vice robot is a robot that can assist people, generally, for perform-
ing a job or task that is dangerous, dull, repetitive, etc. Although
service robots can be autonomous and/or manually operated, a
high degree of autonomy is desirable. Autonomy has two great
advantages: the robot can operate without human supervision
and in unstructured environments. These two characteristics,
together with the fact that some companies are starting to sell
ll rights reserved.

Cajal program of the Spanish

Mucientes), jalcala@decsai.
lcalá), casillas@decsai.ugr.es
service robots ready to operate without any modification, are mak-
ing service robots popular. Some examples of tasks that are suc-
cessfully done by service robots are: cleaning and housekeeping
(pool cleaner, vacuum cleaner, window cleaner), lawn mowing,
entertainment, surveillance or transportation. Also, another field
that is generating the attention of the robotics research community
is the assistance to people at home, by helping elderly and handi-
capped people to move and communicate.

To develop this kind of tasks, the robot must be endowed with a
control system. The control of an autonomous robot can be gener-
ally described at two levels: the reactive and the deliberative (or
planning) layers. On the one hand, at the deliberative layer the ro-
bot solves those tasks that require knowledge of current and previ-
ous sensor readings, like planning a route, or selecting the set of
actions that are going to be implemented to fulfill a goal. On the
other hand, the reactive layer is usually composed of a set of
behaviors. A behavior is a controller that is able to solve a specific
task on real time, like crossing a door, following a moving object,
avoiding a collision, following a contour, etc.

Fuzzy logic has been widely used in robotics (Saffiotti, 1997),
and particularly for the implementation of behaviors (Hoffmann,
2003; Mucientes, Iglesias, Regueiro, Bugarín, & Barro, 2003;

http://dx.doi.org/10.1016/j.eswa.2009.06.095
mailto:manuel.mucientes@usc.es
mailto:jalcala@decsai. ugr.es
mailto:jalcala@decsai. ugr.es
mailto:alcala@decsai.ugr.es
mailto:casillas@decsai.ugr.es
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

1472 M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493
Mucientes et al., 2001). The main reasons are, firstly, the inherent
uncertainty of real environments in which a robot operates: there
are people moving in the surrounding of the robot, the obstacles
can be moved (a chair can be displaced, a door can be opened or
closed, etc.). In second place, the information of the environment
is provided by sensors that are not ideal: there is lack of reliability
in the data provided by a sensor, and this uncertainty is different
for each kind of sensor. Finally, the actuators of the robot are also
imperfect, thus the control orders are never performed with preci-
sion. Fuzzy controllers are able to cope with this unreliability,
uncertainty and lack of robustness, and this is the reason of their
success in robotics.

In general, the design of a fuzzy controller is a difficult and
highly time consuming task, as there are lots of values of parame-
ters to define. If the design does not incorporate previous/expertise
knowledge of the process to be controlled, then the designer has to
define the universe of discourse of each variable, the number of
labels, the description of each label, and the consequent of each
rule. Thus, it seems adequate to use a learning algorithm to design
a fuzzy controller.

The implementation of behaviors in robotics is specially diffi-
cult, as the controller must be run on the real robot but, generally,
the learning algorithm cannot. A learning process usually lasts for a
long time, trying thousands of different situations. On the real
robot this would require the supervision of a human along the
learning time. Moreover, the learning methodologies try the same
situation with different outputs to evaluate the performance, but
on the real robot it is very difficult to reproduce the same condi-
tions several times, and to place the robot in the same initial posi-
tion. Also, during the learning stage, control actions that take the
robot into hazardous situations could be tried. On the real robot
these situations can provoke damage on the robot due to a colli-
sion. In summary, learning on the real robot presents several draw-
backs, and from our point of view it should only be considered for
tuning.

Learning of fuzzy controllers in mobile robotics is usually solved
learning off-line, using a simulator of the real robot. Depending on
the quality of the learning methodology and its interaction with
the simulator, the learned controller can be directly used on the
real robot, or it will require some kind of tuning. The increase of
popularity of service robots demands the existence of good and
easy to use algorithms to learn behaviors. With good algorithms,
we mean methodologies that do not require any learning/tuning
stage on the real robot. Thus, a behavior is learned off-line, and
directly implemented on the real robot. Also, we want easy to
use algorithms: methodologies that require the definition of a
low number of parameters, and low expertise knowledge. In that
way, it would be easy to guide an inexpert user through the pro-
cess for learning a new behavior.

At this point, two questions arise: which methodology should
be used to learn a fuzzy controller? And, what kind of fuzzy con-
troller is the most adequate? The most popular groups of learning
methodologies for fuzzy controllers in robotics are evolutionary
algorithms (Dahl & Giraud-Carrier, 2004; Gu, Hu, Reynolds, &
Tsang, 2003; Hagras, Callaghan, & Collin, 2004; Izumi, Watanabe,
& Jin, 1999; Katagami & Yamada, 2000; Mucientes, Moreno, Buga-
rín, & Barro, 2006; Mucientes, Moreno, Bugarín, & Barro, 2007; Oh
& Barlow, 2004; Yamada, 2005), neural networks (Hui, Mahendar,
& Pratihar, 2006; Shiah & Young, 2004) and reinforcement learning
(Beom & Cho, 1995; Bonarini, 1997; Gu, Hu, & Spacek, 2003; Kal-
már, Szepesvári, & Lörincz, 1998; Lin, 2003; Takahashi & Asada,
2003; Thongchai, 2002; Wang, Huber, Papudesi, & Cook, 2003;
Zhou, 2002). Also, combinations of them, like neural networks
and evolutionary algorithms (Berlanga, Sanchis, Isasi, & Molina,
2000; Chen & Chiang, 2004; Floreano & Mondada, 1998; Lee &
Zhang, 2000; Miglino, Lund, & Nolfi, 1995; Nelson, Grant, Barlow,
& White, 2003; Tuci, Quinn, & Harvey, 2003), have been success-
fully applied.

Evolutionary algorithms have some characteristics that make
them specially adequate for learning fuzzy controllers. The
flexibility in the representation of the solutions is very high. A chro-
mosome can codify a complete knowledge base, a rule, some
parameters of the fuzzy sets, etc. For this reason, this kind of opti-
mization techniques can easily handle any type of fuzzy systems.
Indeed, the combination of fuzzy logic with the learning capabilities
of evolutionary algorithms is well known as evolutionary fuzzy sys-
tems (Cordón, Herrera, Hoffmann, & Magdalena, 2001). Thus,
depending on the characteristics of the problem and the demands
of the final user, the designer has the possibility to determine the
most appropriate trade-off between accuracy and interpretability
by selecting different kinds of fuzzy controllers. This property of
evolutionary algorithms links with the second of the questions that
must be decided to learn a fuzzy controller: the type of fuzzy con-
troller that should be learned. The controller can be Mamdani or
TSK, it can have weighted rules, it can be defined with global or local
semantics, etc. The decision of the type of controller will be based
on the desired trade-off between accuracy and interpretability.

In summary, a designer has the possibility to choose different
combinations of fuzzy controllers and learning algorithms. As far
as we know, no exhaustive studies about the performance of all
these choices has been done from the point of view of the design
of behaviors in mobile robotics. Exhaustive means that several
types of evolutionary fuzzy systems are analyzed and compared,
for different behaviors, in many different situations (both simu-
lated and on the real robot), and with a deep study about the influ-
ence of the different design parameters.

In this paper, we present a deep experimental study on the per-
formance of different evolutionary fuzzy systems for the imple-
mentation of behaviors in robotics. The selected methodologies
cover a wide range of the accuracy/interpretability trade-off. All
of them are based on the application of a technique for the gener-
ation of datasets, proposed in Mucientes and Casillas (2007), to
learn behaviors in robotics. Two totally different behaviors have
been considered for evaluation purposes: wall-following and mov-
ing object following. For both behaviors, an exhaustive analysis has
been performed with a robot simulator, together with the evalua-
tion of the best controllers on the real robot. The analysis includes
a study on several parameters like the number of labels, number of
examples, importance of rule base reduction in the fitness function,
weights in the fitness function, and other parameters that are
behavior dependent.

The paper is structured as follows: Section 2 presents in short the
framework to learn behaviors in mobile robotics, and Section 3 de-
scribes the four data-driven learning algorithms. Section 4 describes
the exhaustive studies that have been performed on two different
behaviors and, finally, Section 5 points out the conclusions.
2. A framework to learn behaviors in mobile robotics

Our approach to learn behaviors for autonomous mobile robots
comprises two different modules: the dataset generation and the
learning algorithm. The objective of the dataset generation is to
provide a methodology that enables any behavior to be learned
by any general purpose data-driven learning algorithm. The advan-
tages of the dataset generation methodology are:

� Provides the designer with a set of simple steps to design any
behavior.

� Generates a dataset that covers all the meaningful situations
that the controller could face when it is running on the real
robot.

M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493 1473
� Obtains a behavior that can be directly implemented on the real
robot without any additional learning/tuning stage.

� Gives the designer freedom to choose any data-driven learning
methodology, as the dataset generation is independent.

The second of the modules of the framework is a data-driven
learning algorithm. In this paper we have used four different algo-
rithms, covering a wide spectrum of the accuracy/interpretability
trade-off. These are: COR (Section 3.1), WCOR (Section 3.2), HSWLR
(Section 3.3) and TSK (Section 3.4). In the remaining of the section,
a short introduction to the dataset generation methodology is gi-
ven (see Mucientes & Casillas (2007) for a more detailed
description).

2.1. Dataset generation methodology

The technique used for the generation of datasets has the fol-
lowing steps:

(1) Definition of the input and output variables, and the calcula-
tion of the input values using the information provided by
the sensors and the robot’s odometry.

(2) Definition of the universe of discourse, the number of fuzzy
sets, and the precision ðpnÞ of each variable n.

(3) Definition of the scoring function, SF, a function that evalu-
ates the action of the fuzzy controller over an example.

(4) Definition of the objective function, the index that measures
the global quality of the encoded rule set. This function is
independent of the behavior.

(5) Robot simulation, in order to reduce the time needed for
learning. The robot is modeled with a set of equations that
are valid for all behaviors.

(6) Construction of the training set.

The study on the evolutionary-based methodologies has been
done for two different behaviors: wall-following and moving ob-
ject following. The wall-following behavior is typically used in in-
door environments for exploring unknown areas, or for moving
between two positions of the environment. The main objectives
of a controller for this behavior are: to keep a suitable distance
to the wall, to move at the highest possible velocity, and to imple-
ment smooth control actions. The controller can be configured
with two parameters: the reference distance ðdwallÞ, which is the
desired distance between the robot and the wall, and the maxi-
mum velocity of the robot ðvmaxÞ.

On the other hand, the moving object following behavior, tries
to maintain the robot at the desired distance ðdref Þ and angle
ðdevref Þ to the object being followed. This controller is very useful
to pursue a person, or to follow other robots for the cooperation
in the fulfillment of other tasks.

2.1.1. Selection of the variables
The goal of any behavior is to place the robot from its current

state to the objective state. If we are able to define the characteris-
tics of this objective state, then most of the work in the dataset
generation module is done. The methodology is described using
as examples the two mentioned behaviors. For the wall-following
behavior the objective state is the state that has a right distance
equal to dwall,1 the speed is vmax, the robot is parallel to the wall,
and the left distance is higher than the right distance (as the robot
is following the right wall). With this information, we can establish
that the input variables for this behavior are the right ðRDÞ and left
ðDQÞ distances to the wall, the velocity of the robot ðLVÞ, and the
1 We assume that the robot is following the right wall.
orientation of the robot to the right wall ðhwallÞ. Moreover, the output
variables are the linear acceleration ðLAÞ and the angular velocity
ðAVÞ. These output variables are common to all the behaviors.

For the moving object following behavior the goal is to place the
robot at the objective point: a point placed at a distance equal to
dref and with an angle of dev ref with respect to the moving object.
Also, the speed and angle of the robot should be equal to those
of the moving object. Thus, the input variables are the distance
ðdÞ and angle ðdevÞ from the robot to the objective point, and the
differences in speed ðDvÞ and angle ðDhÞ between the robot and
the moving object.

2.2. Universe of discourse and precision

The second step in the design is the definition of the universe of
discourse, the number of fuzzy sets, and the precision ðpnÞ of each
variable n. The universe of discourse must contain all the values
that are meaningful from the point of view of the learning algo-
rithm. For example, if the robot has to follow the wall at 0.5 m, a
possible universe of discourse could be RD 2 ½0;3�, but also
RD 2 ½0;5�. However, control actions for distances between 3 and
5 m should be equal for all these situations. The selection of the
second of the universes of discourse would generate a larger data-
set, with examples that are irrelevant for learning. Although both
universes of discourse are valid for the learning algorithm module,
the second one slows down the learning time. Therefore, the de-
signer should keep the universe of discourse as reduced as possi-
ble, but taking into account that the cost of choosing a universe
of discourse reduced over the limit decreases the quality of the
learned behavior, while an oversized universe of discourse only
penalizes the learning time.

The same occurs with the precision of the variables. Precision is
used to generate the examples (Section 2.6). Very low values of pi

generate a higher number of examples and, therefore, many of
them are not meaningful for the learning algorithm. The rules for
the selection of the universe of discourse can be applied again for
the selection of the precisions of the variables, but in this case, a
higher precision means a lower number of examples.

Finally, the fuzzy sets of each variable are uniformly distributed
in the universe of discourse, with triangular shape, and following a
Ruspini’s strong fuzzy partition.

2.3. Scoring function

The key point of the dataset generation methodology is the def-
inition of the scoring function, SF, for a behavior. Given a state of
the robot (an example of the training set), SF has to evaluate the
state reached by the robot after applying the control action pro-
posed by the fuzzy controller. The evaluation of a state consists
in measuring its similarity to the objective state. Thus, indepen-
dently of the behavior, SF can be defined as:

SFðRBðelÞÞ ¼
X

i

ai; ð1Þ

where el is the lth example and SFðRBðelÞÞ is the score of the state
reached by the robot starting at the state defined by el and applying
the control action proposed by the fuzzy rule base RB. Moreover, ai

measures the similarity in the value of variable i between the
reached state and the objective state:

ai ¼ wi �
jvali � objij

maxDiffi
; ð2Þ

where vali is the value of variable i; obji is the objective value of that
variable and wi is a weight that measures the importance of the con-
tribution of variable i to SF. maxDiffi is the maximum of all the pos-
sible values of jvali � objij. In that way, each ai takes values in ½0;wi�.

Table 1
Main characteristics of the analyzed learning methods.

Method Rule type Weights Hierarchical MF type MF tuning RB reduction Flexibility Interpretability

COR Mamdani No No Grid No Embedded Weak Excellent
WCOR Mamdani Yes No Grid No Embedded Fair Good
HSWLR Mamdani Yes Yes Grid No A posteriori Good fair
TSK TS No No Scatter Yes A posteriori Excellent Poor

1474 M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493
The definitions of SF (Eq. (1)) and ai (Eq. (2)) are independent of
the behavior. For an specific behavior, the designer has to define wi

and obji. Values of obji represent the objective state. Thus, for
the wall-following behavior these values are: objRD ¼ dwall,
objLV ¼ vmax, and objhwall

¼ 0. These values are the representation
of our definition of objective state: the robot must be at the refer-
ence distance, with the maximum velocity and parallel to the
wall.2 In the same way, we can define obji for the moving object fol-
lowing behavior: objd ¼ dref , objdev ¼ dev ref , objDv ¼ 0, and objDh ¼ 0.

2.4. Objective function

The index that measures the global quality of the encoded rule
set is independent of the behavior, and can be defined as:

f ðRBÞ ¼ 1
2 � NE

XNE

l¼1

ðgðelÞÞ2; ð3Þ

where NE is the number of examples and gðelÞ is defined as follows:

gðelÞ ¼ ð1� hðelÞÞ � fþ 1; if hðelÞ 6 1;
expð1� hðelÞÞ; otherwise;

(
ð4Þ

with f being a scaling factor that has been set to 1000 for all the
behaviors, and

hðelÞ ¼minðSFðelÞÞ þ 1
SFðRBðelÞÞ þ 1

; ð5Þ

with minðSFðelÞÞ being the minimum score that an action can obtain
for example el (using the output values as described in Section 2.6).

2.5. Robot simulation

The use of a robot simulation software facilitates the learning
and test stages, as compared with the real robot. Nevertheless, try-
ing thousands of control orders with the simulation software is
very time consuming. Therefore, in order to reduce the time
needed for learning, the simulation software has not been used. In-
stead, the movement of the robot has been modeled with a stan-
dard set of kinematic equations: the equations of a uniformly
accelerated motion in two dimensions.

2.6. Construction of the training set

Controllers are learned using a set of examples. As has been
mentioned, depending on the selected values for the universes of
discourse and the precisions, the number of examples can vary.
The dataset is automatically generated by: starting from the mini-
mum value of each variable and increasing the value in a quantity
equal to pi until the maximum value is reached, a number of differ-
ent values for the variables is obtained. The set of examples is
created combining these values for all the variables of the anteced-
ent part.

The values of the variables of the consequent part for each
example are determined by testing all the possible combinations
2 There is not an objective left distance.
of their discrete output values (according to the corresponding pre-
cision degrees) and selecting those which let the robot reach the
state closest to the ideal state. The function that determines how
close a state is from the ideal state is SF as defined in Section
2.3: the lower the value of SF, the closer the state is to the ideal
state.

3. Learning fuzzy models with different accuracy/
interpretability trade-offs

After introducing the strategy to provide data sets for automatic
learning of fuzzy controllers, this section introduces several learn-
ing methods that could be applied on these data. Indeed, one of the
most important problems in the applications of fuzzy logic is the
automatic derivation of fuzzy models from numerical information
(input–output data pairs) representing the behavior of the real sys-
tem. Numerous automatic methods—based on ad hoc data-driven
approaches (Nozaki, Ishibuchi, & Tanaka, 1997; Wang & Mendel,
1992) or on different techniques such as neural networks (Fuller,
2000; Nauck, Klawonn, & Kruse, 1997) and evolutionary algorithms
(GAs) (Cordón et al., 2001)—have been developed to perform this
task.

One of the most promising research topics in fuzzy modeling re-
lates with the quest of a good trade-off between interpretability
and accuracy (Casillas, Cordón, Herrera, & Magdalena, 2003a,
2003b). To do so, different mechanisms to improve the accuracy
and the interpretability are used and, moreover, they are properly
gathered to regulate the desired trade-off. Although the degree of
accuracy and interpretability is mainly related with the user
preferences, depending on the problem being solved (Bonissone,
Subbu, Eklund, & Kiehl, 2006) an adequate trade-off should be
ensured in order to prevent overfitting. In fact, the degree of
complexity or flexibility of the learned models is usually increased
in order to improve the system accuracy. The derivation of too
complex or flexible models can lead to very specific system behav-
iors with very good performance in training data but inconsistent
performance in the real system. Therefore, a study on different
kinds of learning algorithms and on the influence of the involved
parameters is required in our case in order to ensure a proper
behavior of the real robot.

In this paper, we have analyzed four learning methods (COR,
WCOR, HSWLR and TSK) that consider a large number of accuracy
and interpretability improvements and represent different degrees
of complexity and flexibility. Table 1 summarizes their main char-
acteristics. In that table, TS represents Takagi–Sugeno type systems
(Takagi & Sugeno, 1985), MF type distinguishes between member-
ship functions with grid partition (i.e., using linguistic variables or
global semantics) or scatter partition (i.e., fuzzy variables without
associated semantics or with local semantics), MF tuning refers
whether the initial membership functions are tuned or not, RB
reduction distinguishes between embedded (where a rule selection
is performed at the same time that they are defined) or a posteriori
(where the selection is performed once a preliminary fuzzy rule set
is defined), and Flexibility gives an idea of the potential approxima-
tion ability provided by the obtained fuzzy model according to the
linguistic scale {excellent, good, fair, weak, poor}. The following sub-
sections briefly describe the considered learning methods by

M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493 1475
extending them for multiple output variables (they were proposed
for single output based problems). For more detailed descriptions,
please refer to the corresponding papers.

3.1. COR: the COR methodology

COR methodology (Casillas, Cordón, & Herrera, 2002) is guided
by example covering criteria to obtain antecedents (fuzzy input
subspaces) and candidate consequents. Following the Wang and
Mendel’s method (1992) (WM) approach this methodology pre-
sents the following learning scheme:

Let E ¼ fe1; . . . ; el; . . . ; eNg be an input–output data set repre-
senting the behavior of the problem being solved—with
el ¼ xl

1; . . . ; xl
n; y

l
1; . . . ; yl

m

� �
; l 2 f1; . . . ;Ng;N being the data set size,

and nðmÞ being the number of input (output) variables. And let
Ai be the set of linguistic terms of the ith input variable—with
i 2 f1; . . . ;ng—and Bj be the set of linguistic terms of the jth output
variable—with j 2 f1; . . . ;mg.

(1) Search space construction:

1.1. Define the fuzzy input subspaces containing positive

examples: To do so, we should define the positive
example set ðEþðSsÞÞ for each fuzzy input subspace
Ss ¼ As

1; . . . ;As
i ; . . . ;As

n

� �
, with As

i 2Ai being a label,
s 2 f1; . . . ;NSg, and NS ¼

Qn
i¼1jAij being the number

of fuzzy input subspaces. In this paper, we use the
following:
EþðSsÞ¼ el2Ej8i2f1; .. .;ng; 8A0i 2Ai;lAs
i
ðxl

iÞPlA0i
ðxl

iÞ
n o

;

ð6Þ

with lAs
i
ð�Þ being the membership function associated

with the label As
i .

Among all the NS possible fuzzy input subspaces, con-
sider only those containing at least one positive exam-
ple. To do so, the set of subspaces with positive
examples is defined as Sþ ¼ fShjEþðShÞ– ;g.
1.2. Generate the set of candidate rules in each subspace with
positive examples: Firstly, the candidate consequent
set associated with each subspace containing at least
an example, Sh 2 Sþ, is defined. In this paper, we use
the following:
CðShÞ¼
�
ðBkh

1 ; . . . ;B
kh
m Þ 2B1�����Bmj9el 2EþðShÞ

where 8j2f1; . . . ;mg; 8B0j 2Bj;lB
kh
j

ðyl
jÞPlB0j

ðyl
jÞ
�
:

ð7Þ
Then, the candidate rule set for each subspace is defined as

CRðShÞ ¼
�

Rkh
¼ IF X1 is Ah

1 and . . . and Xn is Ah
n THEN Y1 is

h
Bkh

1 and . . . and Ym is Bkh
m � such that Bkh

1 ; . . . ; Bkh
m

� �
2 CðShÞ

�
. To

allow COR to reduce the initial number of fuzzy rules, the
special element R; (which means ‘‘do not care”) is added to
each candidate rule set, i.e., CRðShÞ ¼ CRðShÞ [R;. If it is se-
lected, no rules are used in the corresponding fuzzy input
subspace.
(2) Perform a combinatorial search among the sets CRðShÞ looking for

the combination of consequents with the best cooperation. Since
the search space tackled in step 3 of the algorithm is usually
large, it is necessary to use approximate search techniques.
In Casillas, Cordón, and Herrera (2002), different search
paradigms were proposed for this purpose. In this work, we
consider the Ant Colony Optimization method described in
Casillas, Cordón, de Viana, and Herrera (2005) as search
technique. In order to assess this combinatorial search tech-
nique, the following global index has been defined:
f 0ðRBÞ ¼ f ðRBÞ þ / � f ðRB0Þ �
#RB
jSþj

ð8Þ
with f ð Þ being the function defined in Eq. (3), / 2 ½0;1� being a
parameter defined by the designer to regulate the importance
of the number of rules, #RB being the number of rules used in
the evaluated solution, and RB0 being the initial rule base con-
sidered by the search algorithm.
3.2. WCOR: the weighted COR methodology

A good technique to improve the cooperation of a set of rules is
the use of weighted fuzzy rules (Alcalá, Alcalá-Fdez, Casillas,
Cordón, & Herrera, 2006; Cho & Park, 2000; Pal & Pal, 1999). This
approach consists of modifying the linguistic model structure to
include an importance factor for each rule (in our case, a value in
½0;1�). In order to do so, we will use the weighted rule structure
and the inference system proposed in Pal and Pal (1999) extended
for multiple output variables:

IF X1 is A1 and . . . and Xn is An

THEN Y1 is B1 and . . . and Ym is Bm with ½w�;
ð9Þ

where XiðYjÞ are the linguistic input (output) variables, AiðBjÞ are
the linguistic labels used in the input (output) variables, w is the
real-valued rule weight, and with is the operator modeling the
weighting of a rule. With this structure, the fuzzy reasoning must
be extended by inferring with the FITA (First Infer, Then Aggregate)
scheme and by computing the defuzzified output of the jth variable
as the following weighted sum:

yðjÞ ¼
P

hmh �wh � PhðjÞP
hmh �wh

; ð10Þ

with mh being the matching degree of the hth rule, wh being the
weight associated to the hth rule, and PhðjÞ being the characteristic
value of the output fuzzy set corresponding to that rule in the jth
variable. In this contribution, the center of gravity will be consid-
ered as characteristic value and the minimum t-norm will play the
role of the implication and conjunctive operators.

In Alcalá, Casillas, Cordón, and Herrera (2002), the Weighted
COR (WCOR) methodology was presented to include weight learn-
ing within the COR methodology (Casillas et al., 2002). In this way,
a Genetic Algorithm (GA) could automatically learn the best conse-
quent label and its associated weight for each possible antecedent
combination in the problem input space. WCOR (Alcalá et al., 2002)
involves an extension of the original COR methodology and con-
sists of:

(1) Search space construction: Obtain the subspaces with positive
examples Sh 2 Sþ and a set of candidate consequents CðShÞ
associated to them using the set of candidate rules CRðShÞ
based on WM (Wang & Mendel, 1992) (see Section 3.1).

(2) Selection of the most cooperative fuzzy rule set and learning of
weights:

� Problem representation. For each rule Rh we have: Sh;CðShÞ,

and wh 2 ½0;1�. Since Sh is kept fixed, the problem will
consist of determining the consequents and the weight
associated to each rule. Two vectors, c1 and c2, of size
jSþj (number of initial subspaces/rules obtained) are
defined to represent this information, where,

S3
1 S3

2 S3
3

S5
1 S5

3 S5
5S5

2 S5
4

S5
1 S5

3 S5
5S5

2 S5
4

DB with n(1)=3 DB1 2

Fig. 1. Two layers of linguistic partitions.

1476 M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493
c1½h� ¼ ; or khjRc1 ½h� 2 CRðShÞ; ð11Þ
c2½h� ¼ wh; 8h 2 f1; . . . ; jSþjg: ð12Þ

In this way, the c1 part is an integer-valued vector in
which each cell represents the index of the consequents
used to build the corresponding rule. The c2 part is a
real-valued vector in which each cell represents the
weight associated to this rule. Finally, a problem solution
is represented as follows:

c ¼ c1c2: ð13Þ

� Perform a search on the c vector, looking for the combination
of consequents and weights with the best cooperation. To do
that, we consider an elitist generational GA with the
Baker’s stochastic universal sampling procedure with
the same fitness function f 0ðRBÞ defined in Eq. (8). The ini-
tial pool is generated at random but including an individ-
ual having all the genes with value ‘1’ in the c2 part and
with valid values for each c1½h� (; or kh values). Eight off-
spring are generated by combining the two ones from
the c1 part (two-point crossover) with the four ones from
the c2 part (max-min-arithmetical crossover). The two
best offspring so obtained replace the two corresponding
parents in the population. As regards the mutation opera-
tor, it applies classical mutation to c1 and takes a value at
random within the interval ½0;1� for the corresponding
gene in c2. See Alcalá et al. (2002) for a complete descrip-
tion of these operators.
3 The expansion factor a may be adapted in order to have more or less expanded
rules.
3.3. HSWLR: Hierarchical Systems of Weighted Linguistic Rules

In Alcalá et al. (2003), the hybridization of both hierarchical and
weighted linguistic fuzzy rules (see Eq. (9)) to derive Hierarchical
Systems of Weighted Linguistic Rules (HSWLRs) is presented. A
Hierarchical Knowledge Base (HKB) is composed of a set of layers,
and each layer is defined by a data base DBt containing the linguis-
tic partitions of layer t (t-linguistic partitions), and a rule base RBt

formed by those linguistic rules whose linguistic variables take val-
ues in the former partitions (t-linguistic rules). The number of lin-
guistic terms in the partitions of layer t will be defined in the
following way (by using strong fuzzy partitions):

nðtÞ ¼ ðnð1Þ � 1Þ � 2t�1 þ 1; ð14Þ

with nð1Þ being the granularity of the initial fuzzy partitions. Fig. 1
graphically depicts the way in which a linguistic partition in
DB1ðnð1Þ ¼ 3Þ becomes a linguistic partition in DB2.

In this subsection, we describe the two-level HSWLR learning
methodology proposed in Alcalá et al. (2003) to generate two-layer
Weighted HKBs (WHKBs). To do so, WM (Wang & Mendel, 1992) is
used based on the existence of a previously defined DB1 and a set of
input–output training data E with N being the data set size. The
measure of error used in the algorithm will be called FðE;RBÞ, that
is the mentioned objective function f ðRBÞ, defined in Eq. (3) and ap-
plied on the training set E. The algorithm consists of the steps:

1. RB1 Generation by means of the WM method: RB1 ¼WMðDB1; EÞ.
2. RB2 Generation: Generate RB2 from RB1;DB1 and DB2.

(a) Calculate the error of RB1 : FðE;RB1Þ.
(b) Calculate for each 1-linguistic rule: FðEi;R

nð1Þ
i Þ, with Ei being

the set of examples matching the ith rule antecedents to
degree s 2 ð0;1�.

(c) Select the 1-linguistic rules with bad performance to be
expanded3: If FðEi;R

nð1Þ
i ÞP a � FðE;RB1Þ Then Rnð1Þ

i 2 RB1
bad

Else Rnð1Þ
i 2 RB1

good.
(d) Create DB2.
(e) Select the 2-linguistic partition terms from DB2 that d-inter-

sect the ones of the bad performance 1-linguistic rules:
IðRnð1Þ

i Þ; 8 Rnð1Þ
i 2 RB1

bad, where d 2 ½0;1� is a cross level of
‘‘significant intersection”.

(f) Extract a candidate set of L 2-linguistic rules:
CLRðRnð1Þ
i Þ ¼WMðIðRnð1Þ

i Þ; EiÞ ¼ fR2�nð1Þ�1
i1

; . . . ;R2�nð1Þ�1
iL

g:

3. Summarization: Obtain a joined set of candidate linguistic rules

(JCLR) with the new generated 2-linguistic rules and the good 1-
linguistic rules,

JCLR ¼ RB1
good [ð

[
i

CLRðRnð1Þ
i ÞÞ;Rnð1Þ

i 2 RB1
bad:

More than one copy of a rule in the same layer can be produced
as a consequence of the generation process (Steps 1, 2 and 3). An
equivalent Weighted Hierarchical Rule Base (WHRB) without re-
peated rules is obtained by maintaining a single instance for
each rule and by assigning a weight wi being the number of
times each rule appears. Other equivalent WHRB can be found
with wi 2 ½0;1� by means of a normalization process over the
weights.

4. Genetic Weight Derivation and Rule Selection Process. To improve
rule cooperation in the final WHRB, rule simplification should
be performed together with a learning of the associated
weights. For this task, we consider an elitist generational GA
with the Baker’s stochastic universal sampling and the same fit-
ness function f 0ðRBÞ defined in Eq. (8). A double coding scheme
ðc ¼ c1 þ c2Þ for both, rule selection and weight derivation, is
used. The c1 part is a binary-coded string representing whether
a rule is selected or not (alleles ‘1’ or ‘0’). The c2 part is a real-
coded string representing the weights applied to each rule (val-
ues in ½0;1�). The initial pool is randomly generated, except for
the first individual, setting to one all the genes in c1 and includ-
ing the weights obtained from Step 3 (summarization) in c2. The

M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493 1477
same genetic operators described in Section 3.2 are used in this
case (Alcalá et al., 2003) (except the mutation that flips the gene
value in c1).

3.4. TSK: local evolutionary learning of Takagi–Sugeno rules

In Alcalá, Alcalá-Fdez, Casillas, Cordón, & Herrera (2007), the
use of local semantics-based Mamdani fuzzy rules as local fuzzy
prototypes was proposed to obtain accurate local semantics-based
TS rules (Takagi & Sugeno, 1985), considering the interaction be-
tween input and output variables and taking into account the fuzzy
nature of these kind of rules. To do so, a two-stage genetic FRBS
was designed following the MOGUL paradigm (Cordón, del Jesus,
Herrera, & Lozano, 1999), a methodology to obtain genetic FRBSs
under the Iterative Rule Learning (IRL) approach.

The local identification of prototypes induces competition
among rules, considering only the quality of the approximation
performed by each rule using an IRL-based approach. However,
the global cooperation among rules should be considered in order
to increase the generalization ability of the modeled system. Fol-
lowing the MOGUL approach, a post-processing stage is considered
for this purpose. In this way, the learning method substantially re-
duces the search space size by dividing the genetic learning pro-
cess in two stages. A complete description of this algorithm can
be found in Alcalá et al. (2007). A brief description of this technique
is presented in the next.
Fig. 2. A Pioneer II AT robot equipped with a laser range scanner.

Table 2
Characteristics of the environments for the wall-following behavior.

Name Dim. (m �m) Length (m) #CC #CX #doors

wsc8a 15 � 15 70 4 7 1
gfs 14 � 10 43 10 6 0
rooms 19 � 12 86 12 6 4
autolab 28 � 20 154 21 11 10
office 26 � 15 146 23 10 8
mapunet 25 � 10 58 15 8 5
hospital 75 � 45 1046 98 69 43
real environment 11 � 12 28 7 3 0
3.5. Local process for identifying prototypes

To obtain a set of local semantics-based Mamdani fuzzy rules
(fuzzy prototypes) we have used a method described in Cordón &
Herrera (2001) that is based on local covering measures to induce
competition among rules, considering the completeness and consis-
tency properties (Cordón et al., 1999). In our case, completeness is
verified requiring that each example is covered to a degree � 2 Rþ.
On the other hand, to verify the consistency, the positive and neg-
ative example concepts (Cordón et al., 1999) are considered. There-
by, the accuracy of a simple fuzzy rule, Rh, on the set of examples, E,
is measured by using a multicriteria fitness function:

FðRhÞ ¼ WEðRhÞ � GxðRhÞ � gnðR�h Þ; ð15Þ

designed to take into account three different criteria (Cordón et al.,
1999): high frequency value ðWEðRhÞÞ, high average covering degree
over positive examples ðGxðRhÞÞ and small negative example set
ðgnðR

�
h ÞÞ. This process is briefly summarized in the following steps:

(1) Perform a strong fuzzy partition for each variable (uniform
triangular-shaped membership functions).

(2) Generate for each example el the global semantics-based
fuzzy rule best covering it. Then, evaluate all the global fuzzy
rules and select the rule with the highest value in the fitness
function ðFðRhÞÞ.

(3) The most promising global fuzzy rule is locally tuned to
identify the local fuzzy prototype best grouping the data
located in the corresponding subspace. This process is
computed by means of the (1 + 1)-Evolutionary Strategy
((1 + 1)-ES) described in Cordón & Herrera (2001) consider-
ing as fitness function F 0ðRhÞ ¼ FðRhÞ � LNIRðRhÞ where
LNIRðRhÞ is a penalty function to avoid excessive proximity
among prototypes (Cordón et al., 1999).

(4) Finally, the obtained prototype is added to the final set of
fuzzy prototypes. Data covered to a certain degree by this
set are removed and not considered for future iterations.
The iterative process ends up when no more uncovered
training data remains.

To obtain the TS consequents, once the set of local fuzzy proto-
types is obtained and considering the same antecedents, the exist-
ing partial linear input–output relation is computed using the data
located in each input subspace by means of the (l; k)-ES presented
in Cordón & Herrera (1999) to minimize the objective function
f ðRBÞ (Eq. (3)).

3.6. Post-processing stage

Two different processes are considered at this stage to improve
f ðRBÞ: the genetic simplification process and the genetic tuning
process:

(1) Genetic simplification process: This process, described in
Cordón & Herrera (2001), is based on a standard binary-
coded GA and also considers the completeness property
ðsÞ. It has the aim of selecting the subset of rules best coop-
erating among the rules generated in the previous stage.

(2) Genetic tuning process: This method is an adaptation of
Cordón & Herrera (1999) (tunes TS FRBSs based on global
semantics) to local semantics. It is based on a hybrid GA-
ES algorithm in which each individual represents a complete
knowledge base. An (1 + 1)-ES is considered as a genetic
operator to locally tune a percentage d of the best individu-
als in each generation. In this method, the variation interval
is independently estimated for each fuzzy set.

Table 3
Environment wsc8a, dwall ¼ 50 cm;vmax ¼ 60 cm=s;weights ¼ ð0:89;0:10;0:01Þ.

Method labels #Examples / #Rules Dist. (cm) Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

COR 4-2-5-2j9-9 5070 0.0 72 55.36 ± 1.28 44.80 ± 0.80 2.92 ± 0.17 152.26 ± 2.22 6.34
5070 0.1 71 47.15 ± 3.61 30.62 ± 3.89 1.97 ± 0.42 223.94 ± 21.32 5.50
5070 0.2 67 48.64 ± 2.97 37.69 ± 1.50 2.70 ± 0.36 180.74 ± 9.05 3.46
5070 0.3 64 50.62 ± 1.41 35.41 ± 1.17 2.53 ± 0.11 197.08 ± 8.16 3.02
5070 0.4 63 47.71 ± 0.98 35.85 ± 1.48 2.16 ± 0.19 186.50 ± 9.12 4.48
5070 0.5 63 52.62 ± 1.33 39.07 ± 0.88 2.84 ± 0.21 176.46 ± 3.83 4.45

24,624 0.0 69 54.97 ± 4.08 45.89 ± 6.06 2.25 ± 1.37 172.22 ± 6.80 5.88
24,624 0.1 67 47.12 ± 2.47 36.20 ± 1.53 4.45 ± 0.41 190.44 ± 11.96 4.97
24,624 0.2 64 51.22 ± 1.79 39.10 ± 1.13 2.77 ± 0.09 177.58 ± 2.77 3.19
24,624 0.3 59 49.66 ± 3.51 32.79 ± 3.00 5.11 ± 0.95 210.66 ± 17.04 3.03
24,624 0.4 58 53.82 ± 4.50 43.51 ± 3.83 2.14 ± 0.87 168.60 ± 5.23 5.09
24,624 0.5 52 53.38 ± 2.25 36.78 ± 2.76 4.06 ± 0.51 188.28 ± 12.81 5.36

WCOR 4-2-5-2j9-9 5070 0.0 79 49.14 ± 2.36 43.35 ± 1.59 2.81 ± 0.05 157.86 ± 5.35 2.44
5070 0.1 69 58.24 ± 1.49 46.47 ± 0.82 2.74 ± 0.39 150.48 ± 4.41 8.77
5070 0.2 63 49.60 ± 2.93 42.77 ± 1.46 5.41 ± 0.50 159.16 ± 6.50 2.08
5070 0.3 60 53.69 ± 5.83 44.80 ± 2.42 2.86 ± 0.23 154.52 ± 7.99 4.84
5070 0.4 55 46.26 ± 2.71 40.75 ± 1.63 4.13 ± 0.44 167.30 ± 7.84 5.29
5070 0.5 52 58.03 ± 2.87 46.13 ± 1.80 3.89 ± 0.40 149.88 ± 4.42 8.61

24,624 0.0 74 60.72 ± 2.06 45.96 ± 1.43 3.28 ± 0.31 151.70 ± 4.74 11.05
24,624 0.1 59 60.40 ± 2.18 46.71 ± 0.79 3.38 ± 0.28 147.50 ± 2.60 10.69
24,624 0.2 53 58.75 ± 2.12 45.61 ± 1.46 3.33 ± 0.09 151.88 ± 5.28 9.31
24,624 0.3 49 61.45 ± 4.28 46.11 ± 2.01 3.49 ± 0.20 150.20 ± 6.14 11.69
24,624 0.4 48 59.50 ± 3.31 46.24 ± 1.91 4.04 ± 0.26 149.06 ± 5.96 9.93
24,624 0.5 45 51.71 ± 3.59 40.66 ± 2.00 3.63 ± 0.24 166.36 ± 9.19 3.47

HSWLR 4-2-3-2j9-9 5070 0.5 91 53.94 ± 0.67 30.23 ± 0.50 2.54 ± 0.16 224.40 ± 2.10 6.52
5070 0.6 86 53.52 ± 0.12 30.99 ± 0.42 2.67 ± 0.09 219.58 ± 2.12 6.07
5070 0.7 82 54.33 ± 1.02 30.11 ± 0.88 2.82 ± 0.09 227.00 ± 5.22 6.89
5070 0.8 78 54.15 ± 0.14 30.08 ± 0.32 2.89 ± 0.06 226.46 ± 2.43 6.73
5070 0.9 77 51.58 ± 0.47 31.83 ± 0.65 4.96 ± 0.17 213.64 ± 3.26 4.24
5070 1.0 76 51.42 ± 0.78 30.46 ± 1.01 3.36 ± 0.13 222.34 ± 6.09 4.23

24,624 0.5 82 54.64 ± 0.83 30.11 ± 0.54 2.55 ± 0.18 226.32 ± 5.20 7.17
24,624 0.6 82 51.43 ± 1.92 26.10 ± 0.77 2.40 ± 0.27 260.68 ± 6.96 4.68
24,624 0.7 79 52.62 ± 0.91 27.66 ± 0.60 2.53 ± 0.09 246.62 ± 4.51 5.59
24,624 0.8 75 52.51 ± 1.77 28.45 ± 0.76 2.48 ± 0.09 238.52 ± 4.19 5.41
24,624 0.9 71 52.35 ± 0.40 30.25 ± 0.15 2.57 ± 0.07 224.84 ± 2.64 5.09
24,624 1.0 74 51.55 ± 1.62 30.78 ± 0.68 2.67 ± 0.19 219.68 ± 5.47 4.32

TSK 4-2-5-2 5070 0.5 95 57.71 ± 1.16 45.01 ± 0.78 3.16 ± 0.16 152.68 ± 2.62 8.44
5070 0.6 95 62.25 ± 3.31 45.86 ± 1.62 2.90 ± 0.37 153.56 ± 4.77 12.44
5070 0.7 94 59.93 ± 0.49 45.72 ± 0.83 3.26 ± 0.26 151.34 ± 4.00 10.37
5070 0.8 96 58.91 ± 1.19 45.56 ± 1.21 3.20 ± 0.16 152.40 ± 4.51 9.46
5070 0.9 93 57.25 ± 1.94 45.45 ± 1.43 3.20 ± 0.18 151.44 ± 4.80 7.98
5070 1.0 95 57.54 ± 1.02 45.39 ± 1.19 3.29 ± 0.22 152.84 ± 4.42 8.25

24,624 0.5 93 59.03 ± 19.00 39.04 ± 6.15 3.24 ± 0.16 161.84 ± 3.01 10.22
24,624 0.6 89 64.14 ± 3.26 44.07 ± 1.62 3.25 ± 0.12 163.16 ± 7.15 14.32
24,624 0.7 94 38.78 ± 1.23 28.85 ± 0.91 2.92 ± 0.16 231.24 ± 6.96 13.21
24,624 0.8 96 50.38 ± 3.00 33.79 ± 1.24 5.06 ± 0.57 204.60 ± 6.77 2.96
24,624 0.9 93 51.30 ± 2.12 31.29 ± 0.88 10.71 ± 0.77 221.90 ± 4.65 4.04
24,624 1.0 98 49.21 ± 2.60 38.36 ± 1.43 3.15 ± 0.37 178.10 ± 6.61 2.88

1478 M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493
4. Results

The study on the different methodologies to learn behaviors in
mobile robotics requires a complete set of tests. Of course, tests on
the real robot should be preferred. However, we want to analyze
the influence of several parameters, and this means that a high num-
ber of knowledge bases must be considered. Moreover, tests should
be done in different environments. For example, we have tried 344
different combinations for the wall-following behavior. Such a num-
ber of tests can not be done on the real robot. Thus, we have run the
different knowledge bases using two simulators. These simulated
environments represent situations completely different from the
learning stage, as the training examples were obtained using the
dataset generation methodology and, also, the simulation during
the learning process was done with a set of equations (Section 2.5).
To complete the study, a representative knowledge base of each of
the data-driven learning algorithms (COR, WCOR, HSWLR and TSK)
was selected and tested on the real robot.

In this section, we have analyzed the two behaviors described in
Section 2: wall-following and moving object following. For the
wall-following behavior, an exhaustive study is shown, comprising
the performance of the data-driven learning algorithms, and the
influence of several parameters (always in simulated environ-
ments). Finally we have tested the best controllers on the real
robot. For the moving object following behavior, the study has ana-
lyzed the performance of the learning algorithms.

Table 4
Environment wsc8a, dwall ¼ 50 cm;vmax ¼ 60 cm=s, weights = (0.89,0.10, 0.01).

Method labels #Examples / #Rules Dist. (cm) Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

COR 4-3-3-3j9-9 5070 0.0 95 52.50 ± 0.73 27.81 ± 0.65 10.57 ± 0.42 248.94 ± 5.78 5.47
5070 0.1 91 58.26 ± 3.56 39.75 ± 0.84 4.34 ± 0.37 176.06 ± 4.76 9.46
5070 0.2 88 63.16 ± 3.73 35.38 ± 0.61 2.87 ± 0.14 206.56 ± 6.02 14.31
5070 0.3 88 53.20 ± 1.33 39.86 ± 0.71 5.67 ± 0.83 174.98 ± 1.79 4.89
5070 0.4 82 44.27 ± 3.03 30.37 ± 2.66 7.97 ± 1.43 235.08 ± 20.17 8.12
5070 0.5 81 55.65 ± 1.81 28.72 ± 0.50 12.61 ± 1.33 237.96 ± 2.64 8.21

24,624 0.0 93 60.45 ± 2.49 35.26 ± 2.16 2.80 ± 0.13 196.88 ± 8.34 11.88
24,624 0.1 93 63.53 ± 1.00 38.40 ± 2.52 3.69 ± 0.81 186.70 ± 11.19 14.34
24,624 0.2 90 50.42 ± 2.83 32.26 ± 0.57 3.04 ± 0.27 212.68 ± 3.14 3.15
24,624 0.3 82 66.32 ± 3.00 36.50 ± 2.29 4.35 ± 0.26 200.40 ± 9.00 17.04
24,624 0.4 84 62.13 ± 0.87 37.85 ± 1.35 3.65 ± 0.22 185.78 ± 7.08 13.13
24,624 0.5 73 73.56 ± 7.51 31.09 ± 3.32 4.11 ± 0.19 224.62 ± 21.24 24.10

WCOR 4-3-3-3j9-9 5070 0.0 106 56.42 ± 2.58 41.05 ± 1.70 2.95 ± 0.39 166.68 ± 8.00 7.67
5070 0.1 95 54.29 ± 2.33 38.64 ± 1.76 3.12 ± 0.22 176.60 ± 7.09 6.00
5070 0.2 86 52.45 ± 1.35 26.98 ± 1.33 14.32 ± 0.96 257.40 ± 9.12 5.51
5070 0.3 81 52.79 ± 1.36 36.98 ± 1.85 7.37 ± 0.62 187.90 ± 9.78 4.81
5070 0.4 74 50.34 ± 2.44 26.20 ± 1.01 15.19 ± 0.74 261.90 ± 11.30 3.69
5070 0.5 71 53.66 ± 2.87 39.13 ± 2.08 6.65 ± 0.22 175.54 ± 10.75 5.38

24,624 0.0 107 47.56 ± 2.21 37.39 ± 1.58 2.97 ± 0.12 182.82 ± 6.41 4.46
24,624 0.1 96 51.32 ± 1.95 38.90 ± 1.49 3.46 ± 0.34 175.38 ± 5.34 3.30
24,624 0.2 87 54.75 ± 0.94 40.06 ± 0.61 3.56 ± 0.06 170.88 ± 2.24 6.27
24,624 0.3 74 52.93 ± 0.64 37.76 ± 0.53 9.44 ± 0.60 181.56 ± 3.40 4.86
24,624 0.4 69 48.04 ± 2.79 27.27 ± 1.53 17.22 ± 0.60 246.40 ± 12.37 5.04
24,624 0.5 66 53.50 ± 0.69 36.73 ± 0.97 9.80 ± 0.12 186.88 ± 4.02 5.48

TSK 4-3-3-3 5070 0.5 120 51.43 ± 1.36 37.54 ± 1.53 5.20 ± 0.50 182.54 ± 8.35 3.53
5070 0.6 118 55.35 ± 1.38 39.67 ± 0.78 4.92 ± 0.39 174.22 ± 3.65 6.85
5070 0.7 119 52.47 ± 0.42 34.63 ± 0.67 7.69 ± 0.19 197.08 ± 3.89 4.76
5070 0.8 121 52.34 ± 0.48 39.04 ± 1.08 4.83 ± 0.23 175.90 ± 4.64 4.20
5070 0.9 119 51.03 ± 0.74 35.32 ± 1.20 8.18 ± 0.88 194.72 ± 5.44 3.40
5070 1.0 119 54.94 ± 0.95 36.08 ± 0.88 5.94 ± 0.37 190.34 ± 3.63 6.84

24,624 0.5 150 53.40 ± 3.38 27.95 ± 0.99 2.56 ± 0.16 244.26 ± 8.97 6.27
24,624 0.6 150 48.20 ± 1.63 36.56 ± 0.90 6.68 ± 0.58 186.08 ± 4.87 3.96
24,624 0.7 153 51.29 ± 2.16 31.53 ± 2.03 8.15 ± 1.19 218.70 ± 16.12 4.01
24,624 0.8 150 50.30 ± 1.85 37.80 ± 1.23 6.02 ± 0.34 180.56 ± 5.57 2.49
24,624 0.9 150 48.89 ± 0.94 36.94 ± 0.61 6.03 ± 0.41 184.28 ± 2.63 3.31
24,624 1.0 156 45.42 ± 1.50 29.55 ± 1.08 2.99 ± 0.06 229.34 ± 7.77 7.17

M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493 1479
The following values have been considered for the parameters
of each data-driven learning algorithm4:

� COR: 50 iterations, 30 ants, q ¼ 0:8;a ¼ 2; b ¼ 2, 0.3 as probabil-
ity of mutation, 4 as mutation rate, 10 iterations of the local
search, 30 as neighbor size in the local search, and 5 as number
of iterations before restart.

� WCOR: 61 individuals, 1000 generations, 0.6 as crossover prob-
ability, 0.1 as mutation probability, and 0.35 for the a factor in
the max-min-arithmetical crossover.

� HSWLR:
– Hierarchical generation: 0.01 as d cross level of significant

intersection, 0.5 as s used to calculate Ei, and 1.3 as a used
to decide the expansion of rule.

– Genetic weight derivation and rule selection process: 61 indi-
viduals, 2000 generations, 0.6 as crossover probability, 0.1
as mutation probability, and 0.35 for the factor a in the
max-min-arithmetical crossover.
� TSK:
– Local process for identifying prototypes: � ¼ 0:01;x ¼ 0:01

and k ¼ 0:1 in the fitness function; c = 0.9 and five iterations
for the (1 + 1)-ES; l ¼ 15; k ¼ 100; c ¼ 0:2 � l ¼ 3; h ¼ 0:7;
q ¼ 5;~r ¼ ðr~x; r~r; r~aÞ ¼ ð2; 0;0Þ;~f ¼ ðf~x; f~r; f~aÞ ¼ ðl;l;1Þ; ðnr;

naÞ ¼ ð0;0Þ and 50 iterations for the ðl; kÞ-ES.
4 With these values we have tried to facilitate the comparisons, selecting standard
common parameters that work well in most cases instead of looking for very specific
values for each approach.
– Genetic simplification process: s ¼ 0:5, 61 individuals, 1000
generations, 0.6 as crossover probability, and 0.1 as mutation
probability.

– Genetic tuning process: 61 individuals, 1000 generations, 0.6
as crossover probability, 0.1 as mutation probability, 0.35
for the factor a in the max-min-arithmetical crossover,
b ¼ 5; d ¼ 0:001, 40 (1 + 1)-ES iterations, a ¼ 0 and c ¼ 0:9
(the updating amount of the Rechenberg’s 1/5-success rule
in the (1 + 1)-ES (Bäck, 1996)).
4.1. Wall-following behavior

A total number of 344 tests have been done for this behavior.
Such a high number of tests makes possible the study on the differ-
ent learning algorithms and the analysis of the parameters. This
number also includes the final tests on the real robot. Table 2
shows some of the characteristics of the environments5 that have
been used to analyze this behavior: the dimensions of the environ-
ment, the length of the path, the number of concave (#CC) and con-
vex (#CX) corners, and the number of times that the robot has to
cross a door (#doors). A concave corner is a corner in which the ro-
bot finds a wall in front of it. On the other hand, a convex corner is
characterized by the existence of a gap in the wall (like an open
5 Environments rooms, autolab, office and hospital are part of the Player/Stage
Project distribution (Gerkey, Vaughan, & Howard, 2003), while mapunet has been
obtained from Howard & Roy (2003).

Table 5
Environment gfs, dwall ¼ 50 cm;vmax ¼ 60 cm=s, weights = (0.89, 0.10,0.01).

Method labels #Examples / #Rules Dist. (cm) Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

COR 4-2-5-2j9-9 5070 0.0 72 52.93 ± 1.26 32.63 ± 2.13 4.32 ± 0.39 134.44 ± 12.29 5.37
5070 0.1 71 46.77 ± 1.54 23.39 ± 1.17 2.82 ± 0.24 195.58 ± 11.69 6.57
5070 0.2 67 51.93 ± 0.87 30.13 ± 0.49 3.87 ± 0.18 146.40 ± 4.77 4.72
5070 0.3 64 52.22 ± 1.41 28.01 ± 1.18 3.54 ± 0.22 158.82 ± 6.02 5.20
5070 0.4 63 49.96 ± 2.48 31.12 ± 1.37 3.54 ± 0.33 140.98 ± 8.70 2.92
5070 0.5 63 54.35 ± 1.62 29.23 ± 1.18 3.70 ± 0.25 152.40 ± 11.45 6.99

24,624 0.0 69 52.14 ± 0.50 28.97 ± 0.83 3.57 ± 0.17 150.72 ± 4.51 5.03
24,624 0.1 67 50.06 ± 2.38 29.96 ± 1.52 4.76 ± 0.40 147.40 ± 8.46 3.06
24,624 0.2 64 49.76 ± 1.11 28.56 ± 1.07 3.74 ± 0.32 150.14 ± 11.64 3.36
24,624 0.3 59 44.56 ± 1.10 21.83 ± 0.65 4.71 ± 0.20 199.96 ± 7.19 8.71
24,624 0.4 58 51.71 ± 1.35 32.57 ± 0.43 4.21 ± 0.13 137.18 ± 2.38 4.28
24,624 0.5 52 51.03 ± 5.75 25.05 ± 1.25 4.52 ± 0.37 178.04 ± 10.54 4.42

WCOR 4-2-5-2j9-9 5070 0.0 79 55.37 ± 4.98 35.02 ± 1.20 4.62 ± 0.40 128.40 ± 4.04 7.33
5070 0.1 69 50.99 ± 1.09 34.32 ± 0.56 4.31 ± 0.18 130.80 ± 11.04 3.46
5070 0.2 63 49.63 ± 1.74 34.05 ± 0.95 6.22 ± 0.38 127.84 ± 3.94 2.93
5070 0.3 60 50.88 ± 1.64 35.21 ± 0.70 4.41 ± 0.20 125.66 ± 4.05 3.27
5070 0.4 55 50.15 ± 0.65 34.11 ± 0.46 5.33 ± 0.39 126.24 ± 1.89 2.72
5070 0.5 52 49.86 ± 2.85 33.83 ± 0.82 4.69 ± 0.12 130.36 ± 4.91 2.74

24,624 0.0 74 54.50 ± 1.19 35.22 ± 0.54 4.77 ± 0.35 121.20 ± 1.94 6.53
24,624 0.1 59 54.16 ± 1.86 34.93 ± 0.54 5.17 ± 0.34 123.42 ± 2.37 6.25
24,624 0.2 53 53.48 ± 1.37 34.86 ± 0.85 4.84 ± 0.16 123.88 ± 3.40 5.65
24,624 0.3 49 53.83 ± 2.56 34.30 ± 0.56 4.68 ± 0.22 128.66 ± 8.21 6.02
24,624 0.4 48 54.34 ± 2.96 32.94 ± 1.61 4.98 ± 0.20 133.98 ± 10.40 6.61
24,624 0.5 45 53.03 ± 1.09 31.43 ± 0.65 4.93 ± 0.18 136.44 ± 4.64 5.58

HSWLR 4-2-3-2j9-9 5070 0.5 91 51.24 ± 0.61 17.24 ± 0.31 2.48 ± 0.09 247.28 ± 5.12 5.39
5070 0.6 86 51.53 ± 0.36 16.84 ± 0.47 2.41 ± 0.12 251.98 ± 7.01 5.69
5070 0.7 82 50.72 ± 0.78 15.80 ± 0.18 2.41 ± 0.10 270.40 ± 4.89 5.07
5070 0.8 78 50.91 ± 0.62 16.09 ± 0.19 2.44 ± 0.03 265.80 ± 3.71 5.21
5070 0.9 77 50.40 ± 0.82 18.33 ± 0.40 3.02 ± 0.08 232.86 ± 2.80 4.53
5070 1.0 76 51.49 ± 0.58 15.42 ± 0.38 2.56 ± 0.04 274.96 ± 7.11 5.80

24,624 0.5 82 52.72 ± 0.61 15.56 ± 0.53 2.58 ± 0.16 271.76 ± 8.13 6.89
24,624 0.6 82 48.90 ± 0.92 13.12 ± 0.31 2.09 ± 0.08 322.78 ± 6.58 5.68
24,624 0.7 79 50.77 ± 0.63 15.03 ± 0.32 2.47 ± 0.14 288.26 ± 6.49 5.19
24,624 0.8 75 51.09 ± 0.56 15.08 ± 0.36 2.34 ± 0.09 281.14 ± 5.13 5.47
24,624 0.9 71 52.85 ± 1.57 16.53 ± 0.86 2.61 ± 0.13 261.40 ± 13.18 6.91
24,624 1.0 74 52.28 ± 0.30 16.00 ± 0.39 2.51 ± 0.15 264.48 ± 2.73 6.45

TSK 4-2-5-2 5070 0.5 95 53.72 ± 0.69 32.80 ± 1.94 4.53 ± 0.40 131.34 ± 7.89 6.07
5070 0.6 95 53.43 ± 1.49 32.05 ± 0.78 4.69 ± 0.22 134.80 ± 2.53 5.88
5070 0.7 94 53.11 ± 1.33 33.27 ± 0.66 5.48 ± 0.13 129.26 ± 4.51 5.47
5070 0.8 96 51.56 ± 1.02 32.41 ± 1.14 5.20 ± 0.32 132.40 ± 5.16 4.16
5070 0.9 93 52.45 ± 1.11 33.27 ± 0.62 4.72 ± 0.16 128.88 ± 3.54 4.88
5070 1.0 95 51.81 ± 1.34 32.75 ± 0.49 4.76 ± 0.22 131.12 ± 2.93 4.35

24,624 0.5 93 47.67 ± 1.39 30.89 ± 0.50 3.90 ± 0.20 140.34 ± 2.76 5.01
24,624 0.6 89 59.33 ± 2.06 30.42 ± 3.12 4.65 ± 0.51 138.87 ± 3.73 11.36
24,624 0.7 94 51.97 ± 0.76 29.13 ± 1.41 3.68 ± 0.28 147.54 ± 8.80 4.86
24,624 0.8 96 49.92 ± 3.25 27.64 ± 1.61 4.16 ± 0.21 153.54 ± 10.83 3.31
24,624 0.9 93 51.31 ± 1.24 27.53 ± 1.38 5.38 ± 0.21 156.20 ± 6.88 4.43
24,624 1.0 98 54.70 ± 1.80 31.43 ± 1.19 4.11 ± 0.34 141.34 ± 13.43 7.09

1480 M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493
door) and is the most complex situation, as at the beginning of this
type corner the sensors of the robot cannot detect the wall to follow.
Finally, the action of crossing a door represents a high difficulty as
the robot has to negotiate a convex corner with a very close wall
in front of it.

For this behavior we have used the Player/Stage (Gerkey et al.,
2003) robot software for the tests on the simulated environments
and for the connection with the real robot. We have tested the con-
trollers on a Pioneer II AT robot equipped with laser range scanners
(Fig. 2). This robot has a skid-steer configuration: it is a four-wheel
drive vehicle with the left-side drive wheels independent of the
right-side drive wheels. With this characteristic each side is inde-
pendent of the other, and the turn will be determined by the wheel
speed and its direction of rotation. Thus, the robot can turn in its
own track. For the simulations, the robot had two lasers (front
and rear) covering the whole surrounding, while on the real robot
only a front laser was used.
The first study that was performed comprised the following
algorithms and parameters:

� Data-driven learning algorithms: COR, WCOR, HSWLR and TSK.
� Granularities of the membership functions: 4-2-5-2j9-9 ðRD�

DQ � hwall � LV jLA� AVÞ and 4-3-3-3j9-9.
� Size of the training set: 5070 (pi = 0.25, 0.5, 7.5, 0.2, 0.125, 0.05)

and 24,624 (pi = 0.2, 0.25, 5.0, 0.125, 0.125, 0.05).
� Six different values of / (Eq. (8)): from 0.0 to 0.5 (COR and

WCOR) and from 0.5 to 1.0 (HSWLR and TSK).
� Three environments: wsc8a, gfs and rooms.

Tables 3–8 contain the results of applying the proposed learning
framework to the mentioned algorithms and parameters. Each row
of the tables shows the results of a learned controller. In order to
evaluate the quality of the controllers we have measured four dif-
ferent indicators: the right distance (Dist.), the linear velocity

Table 6
Environment gfs, dwall ¼ 50 cm;vmax ¼ 60 cm=s, weights = (0.89,0.10, 0.01).

Method labels #Examples / #Rules Dist. (cm) Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

COR 4-3-3-3j9-9 5070 0.0 95 49.95 ± 1.56 22.00 ± 1.20 7.96 ± 0.42 198.00 ± 13.10 3.85
5070 0.1 91 51.52 ± 3.12 26.53 ± 1.03 5.50 ± 0.26 163.56 ± 7.91 4.72
5070 0.2 88 57.93 ± 3.31 23.99 ± 1.48 3.74 ± 0.31 184.32 ± 9.56 10.74
5070 0.3 88 54.62 ± 5.98 29.85 ± 2.01 5.33 ± 0.42 149.90 ± 13.07 7.17
5070 0.4 82 50.26 ± 1.19 26.09 ± 1.19 6.53 ± 0.24 170.18 ± 5.13 3.63
5070 0.5 81 50.38 ± 1.70 22.55 ± 0.74 10.72 ± 0.35 193.90 ± 7.34 4.09

24,624 0.0 93 56.99 ± 1.65 25.44 ± 0.62 3.29 ± 0.13 168.72 ± 4.41 9.75
24,624 0.1 93 51.97 ± 2.88 22.21 ± 1.57 5.92 ± 0.61 182.54 ± 6.65 5.55
24,624 0.2 90 54.58 ± 0.59 24.38 ± 0.42 3.47 ± 0.11 173.36 ± 5.27 7.68
24,624 0.3 82 47.12 ± 1.54 27.09 ± 0.75 3.67 ± 0.51 164.50 ± 6.35 5.88
24,624 0.4 84 56.74 ± 0.85 20.85 ± 0.92 3.73 ± 0.30 199.00 ± 8.57 9.98
24,624 0.5 73 53.47 ± 4.18 21.95 ± 1.55 3.13 ± 0.22 194.50 ± 12.17 6.93

WCOR 4-3-3-3j9-9 5070 0.0 106 50.65 ± 0.58 29.27 ± 0.47 4.07 ± 0.07 147.88 ± 1.52 3.66
5070 0.1 95 50.68 ± 0.99 28.04 ± 0.78 4.16 ± 0.23 154.14 ± 4.92 3.81
5070 0.2 86 51.71 ± 1.52 24.38 ± 0.45 5.84 ± 0.58 174.90 ± 4.52 5.10
5070 0.3 81 51.53 ± 1.79 28.91 ± 1.10 6.12 ± 0.34 152.86 ± 7.57 4.49
5070 0.4 74 54.02 ± 1.98 23.12 ± 1.32 8.31 ± 0.24 193.50 ± 21.44 7.31
5070 0.5 71 52.02 ± 0.91 29.35 ± 0.33 7.31 ± 0.33 149.94 ± 2.32 4.88

24,624 0.0 107 48.73 ± 0.53 29.80 ± 0.39 4.29 ± 0.08 146.72 ± 1.99 4.16
24,624 0.1 96 48.94 ± 0.72 29.37 ± 0.33 4.26 ± 0.17 147.96 ± 2.46 4.02
24,624 0.2 87 50.62 ± 0.79 28.07 ± 0.45 4.05 ± 0.20 154.52 ± 2.46 3.75
24,624 0.3 74 50.36 ± 0.62 29.15 ± 0.62 6.94 ± 0.71 149.72 ± 3.15 3.41
24,624 0.4 69 48.42 ± 1.18 25.61 ± 0.27 9.32 ± 0.60 170.36 ± 3.25 4.86
24,624 0.5 66 51.40 ± 0.79 28.37 ± 0.97 6.95 ± 0.18 153.10 ± 5.34 4.42

TSK 4-3-3-3 5070 0.5 120 50.39 ± 0.68 28.77 ± 0.70 4.81 ± 0.17 149.06 ± 3.15 3.47
5070 0.6 118 52.09 ± 1.77 29.81 ± 1.13 5.91 ± 0.30 144.84 ± 5.99 4.90
5070 0.7 119 51.27 ± 1.06 29.14 ± 0.79 5.68 ± 0.31 150.38 ± 6.18 4.23
5070 0.8 121 51.62 ± 1.14 30.37 ± 1.09 4.79 ± 0.18 142.90 ± 5.88 4.42
5070 0.9 119 50.22 ± 1.20 29.83 ± 0.56 5.83 ± 0.32 145.22 ± 5.02 3.22
5070 1.0 119 53.67 ± 1.24 29.47 ± 0.88 5.52 ± 0.36 146.26 ± 5.46 6.36

24,624 0.5 150 52.86 ± 1.08 28.40 ± 1.18 4.08 ± 0.24 152.38 ± 7.76 5.73
24,624 0.6 150 49.25 ± 1.44 28.44 ± 0.36 6.10 ± 0.45 151.86 ± 3.95 3.83
24,624 0.7 153 49.28 ± 0.88 27.68 ± 1.04 7.42 ± 0.28 155.42 ± 7.32 3.88
24,624 0.8 150 49.85 ± 0.95 28.46 ± 0.49 5.91 ± 0.16 151.62 ± 2.05 3.29
24,624 0.9 150 49.02 ± 1.06 27.99 ± 0.40 5.87 ± 0.18 154.82 ± 1.80 4.08
24,624 1.0 156 48.89 ± 1.33 24.89 ± 0.91 3.49 ± 0.08 170.78 ± 5.74 4.51

M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493 1481
(Vel.), the change in the linear velocity between two consecutive
cycles (Vel.ch.)—which reflects the smoothness in the control—
and the time. The average values of the indicators are calculated
for each lap that the robot performs in the environment. Results
presented in the tables are the average and standard deviation val-
ues over five laps of the average values of the indicators over one
lap. Moreover, we have found worthy to evaluate the error (inverse
of accuracy) of a controller with a numerical value. Of course, the
error could be measured in many different ways. In particular,
the analysis of the error of a behavior in mobile robotics is some-
how subjective. Taking this into account, we have decided to mea-
sure the error for this behavior as:

error ¼ 0:9 � jDist � dwallj þ 0:1 � jVel� vmaxj ð16Þ

Thus, the lower its value, the better the accuracy of the controller.
Tables 3–8 show in bold face the lower error (best accuracy) for
each data-driven algorithm in the table. The objective of this first
study is to analyze the influence of the number of labels, number
of examples and / values in the error of the controllers.

4.1.1. Number of labels
In order to study its influence, we have analyzed the error of

each row in a table with its counterpart in another table. Thus,
for example, we have compared the error of the first row of Tables
3 and 4, as the only difference between them is the number of la-
bels. Finally, for each learning algorithm, we have counted the
times that the error of one of the labels sets outperforms the other.
Due to the characteristics of the HSWLR algorithm, only one set of
labels has been used and, therefore, this algorithm has been ex-
cluded from this analysis. For the COR algorithm the set of labels
4-2-5-2j9-9 clearly outperforms (75% of the times) the set 4-3-3-
3j9-9. On the contrary, the best labels set for WCOR (67% of the
times) and TSK (81% of the times) is 4-3-3-3j9-9. Thus, the number
of labels really influences the performance of the learned behavior:
the higher the number of labels, the higher the error of the control-
ler. Nevertheless, a higher number of labels also reduces the inter-
pretability of the knowledge base.

These conclusions must be qualified for our labels sets selection,
as COR obtains better results with a lower number of labels. The
reason is that set 4-3-3-3j9-9 has a higher or equal number of la-
bels for all the variables but hwall (orientation of the robot to the
wall). The performance of this behavior requires a right distance
close to dwall (Eq. (16)), and this heavily depends on a precise clas-
sification of hwall. However, WCOR and TSK are algorithms that can
obtain higher accuracies than COR, and can compensate the depen-
dency in the number of labels of hwall with a higher global number
of labels.

4.1.2. Number of examples
The analysis of the influence of the number of examples in the

training set has followed the same structure as in the previous sec-
tion. We have compared the accuracies of knowledge bases that
have been learned with the same parameters but the number of
examples. What we could expect is that if there are many exam-

Table 7
Environment rooms, dwall ¼ 50 cm;vmax ¼ 60 cm=s, weights = (0.89, 0.10,0.01).

Method labels #Examples / #Rules Dist. (cm) Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

COR 4-2-5-2j9-9 5070 0.0 72 50.66 ± 0.57 45.51 ± 0.25 2.61 ± 0.19 186.08 ± 1.16 2.04
5070 0.1 71 47.99 ± 1.78 36.77 ± 2.10 1.96 ± 0.24 229.94 ± 11.07 4.13
5070 0.2 67 47.97 ± 0.99 41.26 ± 0.19 2.13 ± 0.23 202.98 ± 1.44 3.70
5070 0.3 64 51.22 ± 1.44 38.98 ± 1.53 1.95 ± 0.17 214.10 ± 6.41 3.20
5070 0.4 63 50.12 ± 1.65 42.45 ± 1.42 2.12 ± 0.26 200.46 ± 7.49 1.86
5070 0.5 63 52.07 ± 2.27 39.68 ± 2.14 2.17 ± 0.21 211.40 ± 13.92 3.90

24,624 0.0 69 51.37 ± 1.95 40.63 ± 1.52 2.36 ± 0.30 197.10 ± 9.51 3.17
24,624 0.1 67 46.34 ± 2.77 38.04 ± 1.60 5.39 ± 0.73 221.78 ± 9.57 5.49
24,624 0.2 64 49.24 ± 1.26 40.69 ± 0.65 2.53 ± 0.11 206.78 ± 3.81 2.62
24,624 0.3 59 48.73 ± 1.22 33.67 ± 1.24 6.65 ± 0.42 250.80 ± 12.26 3.78
24,624 0.4 58 48.79 ± 1.66 44.14 ± 1.01 2.33 ± 0.18 192.44 ± 3.12 2.68
24,624 0.5 52 44.41 ± 2.03 30.19 ± 2.27 4.98 ± 0.38 282.74 ± 19.52 8.01

WCOR 4-2-5-2j9-9 5070 0.0 79 49.33 ± 1.51 45.49 ± 0.53 2.50 ± 0.14 184.20 ± 1.62 2.05
5070 0.1 69 54.08 ± 1.40 46.23 ± 0.31 2.44 ± 0.17 182.60 ± 1.77 5.05
5070 0.2 63 46.79 ± 0.58 42.04 ± 0.76 8.15 ± 0.64 201.26 ± 3.30 4.69
5070 0.3 60 51.54 ± 1.43 45.58 ± 0.49 2.54 ± 0.18 184.90 ± 1.26 2.83
5070 0.4 55 47.59 ± 1.64 43.04 ± 1.32 6.22 ± 0.12 196.80 ± 5.31 3.87
5070 0.5 52 56.60 ± 1.35 46.79 ± 0.35 3.25 ± 0.23 181.60 ± 1.74 7.26

24,624 0.0 74 56.29 ± 2.06 46.27 ± 0.70 2.70 ± 0.16 181.36 ± 2.33 7.03
24,624 0.1 59 54.97 ± 1.46 46.18 ± 0.71 2.84 ± 0.24 182.10 ± 1.69 5.86
24,624 0.2 53 57.70 ± 0.81 46.86 ± 0.40 3.04 ± 0.04 180.02 ± 1.36 8.24
24,624 0.3 49 59.32 ± 0.47 46.37 ± 0.40 2.80 ± 0.22 182.76 ± 1.82 9.75
24,624 0.4 48 55.16 ± 1.55 45.39 ± 0.45 3.07 ± 0.21 184.56 ± 2.29 6.11
24,624 0.5 45 50.13 ± 0.57 40.26 ± 0.33 2.88 ± 0.05 204.90 ± 0.82 2.09

HSWLR 4-2-3-2j9-9 5070 0.5 91 51.87 ± 0.30 28.35 ± 0.47 1.83 ± 0.18 292.16 ± 3.69 4.85
5070 0.6 86 51.36 ± 1.31 29.51 ± 0.47 1.95 ± 0.10 281.96 ± 3.38 4.27
5070 0.7 82 51.14 ± 0.87 27.19 ± 0.23 1.81 ± 0.07 305.54 ± 1.89 4.31
5070 0.8 78 52.57 ± 0.73 27.33 ± 0.63 1.93 ± 0.08 304.50 ± 4.84 5.58
5070 0.9 77 48.78 ± 0.71 30.50 ± 0.13 4.52 ± 0.16 274.84 ± 1.19 4.05
5070 1.0 76 50.09 ± 0.88 28.71 ± 0.29 3.04 ± 0.20 290.70 ± 3.66 3.21

24,624 0.5 82 50.40 ± 1.53 27.25 ± 0.78 1.71 ± 0.16 303.38 ± 8.93 3.64
24,624 0.6 82 48.34 ± 1.52 25.02 ± 0.45 1.41 ± 0.18 331.12 ± 6.17 4.99
24,624 0.7 79 49.33 ± 1.67 25.33 ± 0.47 1.64 ± 0.12 328.70 ± 5.72 4.07
24,624 0.8 75 48.18 ± 1.25 27.43 ± 0.48 1.51 ± 0.11 301.50 ± 4.69 4.90
24,624 0.9 71 49.13 ± 0.95 29.09 ± 0.47 1.75 ± 0.11 284.78 ± 4.45 3.87
24,624 1.0 74 50.31 ± 1.46 29.78 ± 0.54 1.71 ± 0.16 277.56 ± 4.04 3.30

TSK 4-2-5-2 5070 0.5 95 52.69 ± 2.22 44.81 ± 1.14 2.80 ± 0.13 187.36 ± 3.15 3.94
5070 0.6 95 58.01 ± 3.26 45.21 ± 1.20 2.77 ± 0.18 185.96 ± 2.92 8.69
5070 0.7 94 52.84 ± 2.02 44.17 ± 0.82 3.38 ± 0.20 191.00 ± 3.08 4.14
5070 0.8 96 52.25 ± 1.13 43.74 ± 0.42 3.22 ± 0.13 192.20 ± 1.47 3.65
5070 0.9 93 53.43 ± 0.95 44.33 ± 0.79 3.10 ± 0.06 189.70 ± 2.66 4.65
5070 1.0 95 50.99 ± 0.98 44.10 ± 0.77 3.24 ± 0.07 190.44 ± 2.65 2.48

24,624 0.5 93 43.69 ± 2.48 40.21 ± 1.93 2.28 ± 0.24 209.98 ± 8.64 7.66
24,624 0.6 89 65.82 ± 1.71 42.92 ± 3.57 2.69 ± 0.17 194.18 ± 5.53 15.95
24,624 0.7 94 40.88 ± 1.05 32.82 ± 0.66 2.71 ± 0.05 254.26 ± 4.61 10.93
24,624 0.8 96 49.40 ± 1.26 32.24 ± 0.43 5.86 ± 0.11 263.02 ± 4.03 3.32
24,624 0.9 93 48.24 ± 2.46 30.61 ± 1.01 9.80 ± 0.56 280.56 ± 6.67 4.52
24,624 1.0 98 45.37 ± 1.46 37.77 ± 0.20 2.60 ± 0.12 221.10 ± 2.25 6.39

6 For the TSK algorithm, there is not a reduction in the number of rules with /
because the genetic simplification process also considers the completeness property.

1482 M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493
ples in the training set that are useless for learning (there are many
examples that represent similar situations), learning will go worse.
This happens as areas of the input space that have a lower concen-
tration of examples will contribute less to the fitness function (Eq.
(3)), while areas with a higher number of examples will be consid-
ered more important. In summary, the training set will be unbal-
anced, which tends to go in detriment of the learning process.

On the one hand, results show a slightly better error of the re-
duced training set (5070 examples) for WCOR (67% of the best tests
correspond to this dataset) and COR (61%), while for the other
methodologies results are similar for both training sets: HSWLR
(56%) and TSK (47%). In general, we can conclude that the perfor-
mance of the controllers is quite independent on the size of the
training set, although a lower number of examples seems to be
slightly better for accuracy. On the other hand, the number of rules
of the knowledge bases is, in most of the comparisons, slightly
higher for the smaller dataset. So, we can conclude that more
examples generate more interpretable knowledge bases.
4.1.3. / value
/ is a parameter that reflects the importance that the fitness

function gives to the reduction in the number of rules (Eq. (8)).
Therefore, high values of / generate knowledge bases with a lower
number of rules, increasing the interpretability but also decreasing
accuracy6. Results show that there is not a / value that systemati-
cally outperforms the others. Therefore, we can conclude that if /
takes values in a reasonable range, accuracies are not affected in
any of the learning algorithms.

Table 9
Environment wsc8a, dwall ¼ 50 cm;vmax ¼ 60 cm=s.

Method and configuration Weights #Rules Dist. (cm) Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

COR ð0:60;0:35; 0:05Þ 74 73.50 ± 4.41 34.91 ± 3.67 3.61 ± 0.68 203.34 ± 23.45 23.66
#Labels: 4-3-3-3j9-9 ð0:70;0:20;0:10Þ 74 41.05 ± 1.13 36.15 ± 0.42 7.89 ± 0.63 189.86 ± 3.04 10.44
#Examples = 5070 ð0:89;0:10; 0:01Þ 88 53.20 ± 1.33 39.86 ± 0.71 5.67 ± 0.83 174.98 ± 1.79 4.89
/ ¼ 0:3 ð0:95;0:04; 0:01Þ 86 55.15 ± 0.73 29.69 ± 1.30 11.80 ± 1.06 231.56 ± 9.33 7.67

WCOR ð0:60;0:35; 0:05Þ 76 70.97 ± 3.23 41.29 ± 2.34 2.59 ± 0.20 204.36 ± 18.09 20.74
#Labels: 4-3-3-3j9-9 ð0:70;0:20;0:10Þ 79 45.06 ± 0.32 41.58 ± 0.33 2.76 ± 0.13 163.06 ± 1.82 6.29
#Examples = 5070 ð0:89;0:10; 0:01Þ 81 52.79 ± 1.36 36.98 ± 1.85 7.37 ± 0.62 187.90 ± 9.78 4.81
/ ¼ 0:3 ð0:95;0:04; 0:01Þ 76 49.49 ± 0.58 16.97 ± 0.16 13.17 ± 0.64 406.80 ± 9.97 4.76

HSWLR ð0:60;0:35; 0:05Þ 56 49.59 ± 1.34 34.60 ± 0.69 2.50 ± 0.07 199.90 ± 2.55 2.91
#Labels: 4-2-3-2j9-9 ð0:70;0:20;0:10Þ 67 49.99 ± 0.80 33.77 ± 0.20 2.67 ± 0.06 203.68 ± 2.73 2.63
#Examples = 5070 ð0:89;0:10; 0:01Þ 76 51.42 ± 0.78 30.46 ± 1.01 3.36 ± 0.13 222.34 ± 6.09 4.23
/ ¼ 1 ð0:95;0:04; 0:01Þ 76 53.87 ± 0.51 25.68 ± 0.44 6.17 ± 0.19 264.04 ± 3.19 6.92

TSK ð0:60;0:35; 0:05Þ 103 77.47 ± 3.44 44.41 ± 2.20 2.36 ± 0.26 226.90 ± 9.20 26.28
#Labels: 4-3-3-3 ð0:70;0:20;0:10Þ 106 42.90 ± 1.89 36.41 ± 2.82 2.68 ± 0.21 181.64 ± 4.31 8.75
#Examples = 5070 ð0:89;0:10; 0:01Þ 120 51.43 ± 1.36 37.54 ± 1.53 5.20 ± 0.50 182.54 ± 8.35 3.53
/ ¼ 0:5 ð0:95;0:04; 0:01Þ 114 48.77 ± 2.92 27.08 ± 1.24 8.27 ± 0.32 249.98 ± 9.43 4.40

Table 8
Environment rooms, dwall ¼ 50 cm;vmax ¼ 60 cm=s, weights = (0.89,0.10, 0.01).

Method labels #Examples / #Rules Dist. (cm) Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

COR 4-3-3-3j9-9 5070 0.0 95 49.99 ± 1.11 26.68 ± 1.13 11.38 ± 0.26 317.14 ± 10.43 3.34
5070 0.1 91 51.87 ± 0.94 38.11 ± 0.92 5.71 ± 0.30 225.88 ± 3.74 3.87
5070 0.2 88 60.75 ± 9.21 34.16 ± 2.73 2.59 ± 0.09 253.64 ± 18.55 12.26
5070 0.3 88 46.80 ± 0.59 37.82 ± 0.41 6.76 ± 0.31 227.16 ± 1.03 5.10
5070 0.4 82 43.81 ± 0.65 32.56 ± 0.70 6.36 ± 0.54 258.68 ± 4.78 8.32
5070 0.5 81 51.57 ± 0.99 25.57 ± 0.86 16.72 ± 0.28 337.94 ± 9.21 4.86

24,624 0.0 93 54.56 ± 1.32 33.71 ± 1.51 2.13 ± 0.16 250.30 ± 12.68 6.73
24,624 0.1 93 56.85 ± 0.92 36.15 ± 0.51 2.60 ± 0.17 231.92 ± 2.43 8.55
24,624 0.2 90 47.67 ± 0.55 33.14 ± 0.30 2.44 ± 0.07 255.84 ± 3.01 4.78
24,624 0.3 82 49.23 ± 1.44 35.65 ± 1.01 6.24 ± 0.16 241.80 ± 6.41 3.13
24,624 0.4 84 58.47 ± 0.49 36.36 ± 0.29 3.41 ± 0.16 235.28 ± 3.48 9.99
24,624 0.5 73 55.90 ± 1.36 33.85 ± 1.24 5.77 ± 0.29 259.00 ± 10.43 7.93

WCOR 4-3-3-3j9-9 5070 0.0 106 50.08 ± 1.42 39.78 ± 0.83 2.44 ± 0.20 208.56 ± 3.55 2.09
5070 0.1 95 50.64 ± 1.24 39.00 ± 0.76 2.58 ± 0.11 212.76 ± 3.19 2.68
5070 0.2 86 51.16 ± 0.83 26.63 ± 0.57 12.06 ± 0.79 330.34 ± 5.77 4.38
5070 0.3 81 51.17 ± 0.77 37.19 ± 0.27 9.15 ± 0.24 234.04 ± 2.70 3.33
5070 0.4 74 48.97 ± 1.99 24.82 ± 0.53 13.95 ± 0.22 353.00 ± 2.89 4.45
5070 0.5 71 50.74 ± 0.33 37.76 ± 0.72 8.97 ± 0.20 227.68 ± 3.49 2.89

24,624 0.0 107 47.87 ± 1.07 40.16 ± 0.73 2.98 ± 0.15 208.18 ± 2.58 3.90
24,624 0.1 96 48.63 ± 1.65 40.79 ± 0.95 2.76 ± 0.29 205.68 ± 5.18 3.15
24,624 0.2 87 50.05 ± 0.39 39.13 ± 0.20 2.72 ± 0.07 213.74 ± 1.15 2.13
24,624 0.3 74 51.00 ± 0.24 37.83 ± 0.66 9.80 ± 0.18 226.14 ± 1.35 3.12
24,624 0.4 69 47.61 ± 2.31 27.72 ± 1.27 15.08 ± 0.30 298.00 ± 8.33 5.38
24,624 0.5 66 50.49 ± 0.63 36.35 ± 0.74 11.09 ± 0.22 244.00 ± 4.64 2.81

TSK 4-3-3-3 5070 0.5 120 49.07 ± 1.08 37.05 ± 0.82 4.96 ± 0.21 227.58 ± 4.46 3.13
5070 0.6 118 52.90 ± 1.03 39.15 ± 0.48 4.13 ± 0.37 216.00 ± 2.79 4.70
5070 0.7 119 50.21 ± 0.82 35.49 ± 0.29 5.67 ± 0.48 237.96 ± 2.54 2.64
5070 0.8 121 50.79 ± 0.95 39.26 ± 0.85 3.93 ± 0.14 215.12 ± 4.17 2.79
5070 0.9 119 47.52 ± 1.25 40.04 ± 0.48 4.57 ± 0.73 211.60 ± 1.83 4.23
5070 1.0 119 53.41 ± 0.79 34.97 ± 0.37 5.73 ± 0.12 243.70 ± 3.90 5.57

24,624 0.5 150 48.74 ± 1.09 36.34 ± 1.01 2.20 ± 0.13 230.76 ± 8.58 3.50
24,624 0.6 150 48.46 ± 0.62 38.67 ± 0.56 4.92 ± 0.15 218.58 ± 2.58 3.52
24,624 0.7 153 49.73 ± 0.90 34.53 ± 0.17 9.01 ± 0.57 245.20 ± 2.26 2.79
24,624 0.8 150 48.43 ± 1.19 38.27 ± 0.88 4.53 ± 0.18 219.96 ± 4.75 3.59
24,624 0.9 150 49.38 ± 1.26 38.96 ± 0.58 4.40 ± 0.08 215.98 ± 3.47 2.66
24,624 1.0 156 43.66 ± 1.01 27.76 ± 0.33 2.62 ± 0.07 300.84 ± 3.31 8.93

M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493 1483
In order to implement other studies, in the remaining of this
section we have selected a combination of the analyzed parame-
ters for each of the data-driven learning algorithms. The selection
of the values of the parameters has been done not for picking the
best representative of each methodology, but for making compar-
ative studies. With that objective we have selected only one set of
examples and one set of labels (in the HSWLR approach this set is
different due to its special characteristics). The combinations are
the following:

� COR: #Labels: 4-3-3-3j9-9, #Examples = 5070, / ¼ 0:3.
� WCOR: #Labels: 4-3-3-3j9-9, #Examples = 5070, / ¼ 0:3.
� HSWLR: #Labels: 4-2-3-2j9-9, #Examples = 5070, / ¼ 1:0.
� TSK: #Labels: 4-3-3-3, #Examples = 5070, / ¼ 0:5.

1484 M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493
4.1.4. Weights in the scoring function
It would be interesting to know how the weights ðwiÞ included

in the definition of ai (Eq. (2)) influence the error of the controllers.
Tables 9–11 show this analysis for four different combinations of
Table 12
Environment wsc8a, weights = (0.89,0.10, 0.01).

Method and configuration dwall vmax Dist. (cm)

COR 75 60 88.65 ± 1.09
#Labels: 4-3-3-3j9-9 50 60 53.20 ± 1.33
#Examples = 5070 40 60 43.59 ± 0.97
/ ¼ 0:3, #R = 88 30 50 30.53 ± 2.69

WCOR 75 60 85.51 ± 0.47
#Labels: 4-3-3-3j9-9 50 60 52.79 ± 1.36
#Examples = 5070 40 60 41.36 ± 0.87
/ ¼ 0:3, #R = 81 30 50 32.46 ± 0.46

HSWLR 75 60 79.77 ± 0.48
#Labels: 4-2-3-2j9-9 50 60 51.42 ± 0.78
#Examples = 5070 40 60 40.22 ± 0.22
/ ¼ 1, #R = 76 30 50 30.28 ± 0.11

TSK 75 60 81.66 ± 0.92
#Labels: 4-3-3-3 50 60 51.43 ± 1.36
#Examples = 5070 40 60 39.31 ± 1.56
/ ¼ 0:5, #R = 120 30 50 30.16 ± 0.60

Table 10
Environment gfs, dwall ¼ 50 cm;vmax ¼ 60 cm=s.

Method and configuration Weights #Rules Dist. (cm)

COR ð0:60;0:35; 0:05Þ 74 48.14 ± 3.07
#Labels: 4-3-3-3j9-9 ð0:70;0:20; 0:10Þ 74 41.01 ± 1.08
#Examples = 5070 ð0:89;0:10; 0:01Þ 88 54.62 ± 5.98
/ ¼ 0:3 ð0:95;0:04; 0:01Þ 86 56.51 ± 0.28

WCOR ð0:60;0:35; 0:05Þ 76 41.42 ± 2.94
#Labels: 4-3-3-3j9-9 ð0:70;0:20; 0:10Þ 79 44.66 ± 1.34
#Examples = 5070 ð0:89;0:10; 0:01Þ 81 51.53 ± 1.79
/ ¼ 0:3 ð0:95;0:04; 0:01Þ 76 53.02 ± 4.52

HSWLR ð0:60;0:35; 0:05Þ 56 49.06 ± 0.73
#Labels: 4-2-3-2j9-9 ð0:70;0:20; 0:10Þ 67 49.85 ± 0.45
#Examples = 5070 ð0:89;0:10; 0:01Þ 76 51.49 ± 0.58
/ ¼ 1 ð0:95;0:04; 0:01Þ 76 52.12 ± 0.61

TSK ð0:60;0:35; 0:05Þ 103 54.49 ± 0.49
#Labels: 4-3-3-3 ð0:70;0:20; 0:10Þ 106 38.54 ± 2.00
#Examples = 5070 ð0:89;0:10; 0:01Þ 120 50.39 ± 0.68
/ ¼ 0:5 ð0:95;0:04; 0:01Þ 114 51.59 ± 2.19

Table 11
Environment rooms, dwall ¼ 50 cm;vmax ¼ 60 cm=s.

Method and configuration Weights #Rules Dist. (cm)

COR ð0:60;0:35; 0:05Þ 74 55.18 ± 5.18
#Labels: 4-3-3-3j9-9 ð0:70;0:20; 0:10Þ 74 36.11 ± 0.60
#Examples = 5070 ð0:89; 0:10; 0:01Þ 88 46.80 ± 0.59
/ ¼ 0:3 ð0:95; 0:04; 0:01Þ 86 54.09 ± 1.49

WCOR ð0:60;0:35; 0:05Þ 76 44.72 ± 4.78
#Labels: 4-3-3-3j9-9 ð0:70;0:20; 0:10Þ 79 42.34 ± 0.45
#Examples = 5070 ð0:89; 0:10; 0:01Þ 81 51.17 ± 0.77
/ ¼ 0:3 ð0:95; 0:04; 0:01Þ 76 50.55 ± 0.93

HSWLR ð0:60;0:35; 0:05Þ 56 46.36 ± 0.78
#Labels: 4-2-3-2j9-9 ð0:70;0:20; 0:10Þ 67 49.41 ± 0.81
#Examples = 5070 ð0:89; 0:10; 0:01Þ 76 50.09 ± 0.88
/ ¼ 1 ð0:95; 0:04; 0:01Þ 76 51.43 ± 0.17

TSK ð0:60;0:35; 0:05Þ 103 51.70 ± 3.69
#Labels: 4-3-3-3 ð0:70;0:20; 0:10Þ 106 30.05 ± 0.31
#Examples = 5070 ð0:89; 0:10; 0:01Þ 120 49.07 ± 1.08
/ ¼ 0:5 ð0:95; 0:04; 0:01Þ 114 48.81 ± 3.22
weights. For the analysis, it must be taken into account that for this
behavior the first objective is to place the robot at the reference
distance, then select the highest possible speed, and finally choose
the correct orientation. We have ranked the errors for each algo-
Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

44.31 ± 0.48 4.52 ± 0.44 158.14 ± 0.64 13.85
39.86 ± 0.71 5.67 ± 0.83 174.98 ± 1.79 4.89
39.75 ± 0.58 5.60 ± 0.97 175.62 ± 2.76 5.26
28.90 ± 3.97 7.15 ± 1.14 210.04 ± 4.66 2.59

42.59 ± 0.39 4.84 ± 0.51 161.54 ± 1.19 11.20
36.98 ± 1.85 7.37 ± 0.62 187.90 ± 9.78 4.81
35.06 ± 0.66 7.89 ± 0.55 196.22 ± 3.39 3.72
31.21 ± 0.27 7.93 ± 0.28 219.72 ± 2.15 4.09

30.13 ± 0.49 2.79 ± 0.18 228.58 ± 1.87 7.28
30.46 ± 1.01 3.36 ± 0.13 222.34 ± 6.09 4.23
30.47 ± 0.56 3.77 ± 0.09 222.46 ± 4.05 3.15
27.83 ± 0.23 4.07 ± 0.09 244.14 ± 1.84 2.47

39.87 ± 0.33 5.39 ± 0.39 170.90 ± 0.73 8.01
37.54 ± 1.53 5.20 ± 0.50 182.54 ± 8.35 3.53
35.50 ± 1.68 5.09 ± 0.32 193.80 ± 8.90 3.07
32.13 ± 2.63 5.42 ± 0.50 223.56 ± 3.33 1.93

Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

26.33 ± 1.64 4.68 ± 0.41 161.14 ± 21.60 5.04
28.50 ± 0.37 5.69 ± 0.19 160.58 ± 3.76 11.24
29.85 ± 2.01 5.33 ± 0.42 149.90 ± 13.07 7.17
22.84 ± 0.93 7.35 ± 0.37 187.40 ± 3.42 9.58

28.32 ± 2.50 2.60 ± 0.46 138.24 ± 8.39 10.89
33.52 ± 0.53 4.19 ± 0.23 136.50 ± 3.18 7.45
28.91 ± 1.10 6.12 ± 0.34 152.86 ± 7.57 4.49
11.16 ± 0.61 5.05 ± 0.13 396.06 ± 18.53 7.60

23.63 ± 0.64 3.02 ± 0.11 186.04 ± 3.42 4.48
22.97 ± 0.25 3.22 ± 0.07 189.76 ± 3.03 3.84
15.42 ± 0.38 2.56 ± 0.04 274.96 ± 7.11 5.80
12.88 ± 0.15 3.11 ± 0.06 321.16 ± 7.05 6.62

30.50 ± 1.03 2.58 ± 0.36 155.88 ± 10.19 6.99
27.80 ± 1.61 2.92 ± 0.20 161.00 ± 10.00 13.53
28.77 ± 0.70 4.81 ± 0.17 149.06 ± 3.15 3.47
22.14 ± 0.74 5.73 ± 0.65 187.18 ± 9.55 5.22

Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

31.95 ± 1.33 4.29 ± 1.27 269.56 ± 22.10 7.47
37.27 ± 0.44 6.14 ± 0.25 234.60 ± 3.59 14.77
37.82 ± 0.41 6.76 ± 0.31 227.16 ± 1.03 5.10
25.72 ± 1.25 12.80 ± 0.59 321.16 ± 8.17 7.11

36.32 ± 3.39 1.57 ± 0.16 248.94 ± 24.87 7.12
43.76 ± 0.23 2.47 ± 0.08 194.54 ± 0.96 8.52
37.19 ± 0.27 9.15 ± 0.24 234.04 ± 2.70 3.33
16.87 ± 0.26 10.41 ± 0.89 499.88 ± 12.38 4.81

33.84 ± 0.72 2.24 ± 0.10 254.10 ± 6.80 5.89
34.07 ± 0.26 2.87 ± 0.08 245.74 ± 1.40 3.12
28.71 ± 0.29 3.04 ± 0.20 290.70 ± 3.66 3.21

22.53 ± 0.36 4.42 ± 0.19 367.42 ± 5.24 5.03

32.68 ± 2.68 1.76 ± 0.24 291.34 ± 31.31 4.26
27.72 ± 0.37 1.06 ± 0.10 311.90 ± 2.13 21.18
37.05 ± 0.82 4.96 ± 0.21 227.58 ± 4.46 3.13

26.61 ± 1.40 7.10 ± 0.68 305.48 ± 3.81 4.41

Table 13
Environment gfs, weights ¼ ð0:89; 0:10;0:01Þ.

Method and configuration dwall vmax Dist. (cm) Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

COR 75 60 70.37 ± 14.18 25.03 ± 4.23 5.92 ± 0.79 137.80 ± 8.15 7.66
#Labels: 4-3-3-3j9-9 50 60 54.62 ± 5.98 29.85 ± 2.01 5.33 ± 0.42 149.90 ± 13.07 7.17
#Examples = 5070 40 60 41.48 ± 3.16 30.37 ± 1.38 6.25 ± 0.56 146.34 ± 15.29 4.30
/ ¼ 0:3, #R = 88 30 50 31.31 ± 1.23 25.44 ± 3.43 7.77 ± 1.27 173.94 ± 4.84 3.64

WCOR 75 60 73.52 ± 6.38 26.10 ± 2.51 5.47 ± 0.61 143.70 ± 5.44 4.72
#Labels: 4-3-3-3j9-9 50 60 51.53 ± 1.79 28.91 ± 1.10 6.12 ± 0.34 152.86 ± 7.57 4.49
#Examples = 5070 40 60 43.14 ± 0.35 28.54 ± 0.68 6.27 ± 0.18 158.32 ± 4.90 5.97
/ ¼ 0:3, #R = 81 30 50 33.11 ± 0.51 26.00 ± 0.34 6.72 ± 0.18 181.46 ± 2.48 5.20

HSWLR 75 60 74.03 ± 1.22 13.34 ± 0.24 2.55 ± 0.15 293.90 ± 6.93 5.54
#Labels: 4-2-3-2j9-9 50 60 51.49 ± 0.58 15.42 ± 0.38 2.56 ± 0.04 274.96 ± 7.11 5.80
#Examples = 5070 40 60 42.03 ± 0.72 19.67 ± 0.49 3.47 ± 0.24 226.80 ± 4.19 5.86
/ ¼ 1, #R = 76 30 50 31.87 ± 0.25 19.89 ± 0.41 3.84 ± 0.05 232.24 ± 2.52 4.69

TSK 75 60 77.53 ± 2.78 26.19 ± 1.15 5.33 ± 0.38 150.48 ± 6.23 5.66
#Labels: 4-3-3-3 50 60 50.39 ± 0.68 28.77 ± 0.70 4.81 ± 0.17 149.06 ± 3.15 3.47
#Examples = 5070 40 60 39.57 ± 1.67 28.96 ± 0.66 5.57 ± 0.21 156.44 ± 3.10 3.49
/ ¼ 0:5, #R = 120 30 50 32.89 ± 2.87 27.26 ± 0.55 4.98 ± 0.16 177.26 ± 11.04 4.88

Table 14
Environment rooms, weights = (0.89,0.10, 0.01).

Method and Configuration dwall vmax Dist.(cm) Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

COR 75 60 78.23 ± 0.74 38.14 ± 0.58 8.48 ± 0.62 212.04 ± 2.05 5.09
#Labels: 4-3-3-3j9-9 50 60 46.80 ± 0.59 37.82 ± 0.41 6.76 ± 0.31 227.16 ± 1.03 5.10
#Examples = 5070 40 60 41.70 ± 3.63 36.42 ± 1.39 7.42 ± 0.32 250.30 ± 19.71 3.89
/ ¼ 0:3, #R = 88 30 50 31.08 ± 0.99 29.89 ± 2.17 10.23 ± 1.02 289.2 ± 6.37 2.98

WCOR 75 60 83.28 ± 0.67 37.50 ± 0.22 7.02 ± 0.59 213.48 ± 2.66 9.70
#Labels: 4-3-3-3j9-9 50 60 51.17 ± 0.77 37.19 ± 0.27 9.15 ± 0.24 234.04 ± 2.70 3.33
#Examples = 5070 40 60 42.01 ± 0.54 35.82 ± 0.46 7.91 ± 0.19 240.38 ± 3.53 4.23
/ ¼ 0:3, #R = 81 30 50 31.37 ± 0.17 31.41 ± 0.21 8.96 ± 0.34 278.54 ± 2.49 3.09

HSWLR 75 60 78.76 ± 0.30 24.56 ± 0.23 2.42 ± 0.09 323.70 ± 2.38 6.93
#Labels: 4-2-3-2j9-9 50 60 50.09 ± 0.88 28.71 ± 0.29 3.04 ± 0.20 290.70 ± 3.66 3.21
#Examples = 5070 40 60 39.58 ± 0.28 30.76 ± 0.21 3.54 ± 0.03 276.68 ± 2.44 3.30
/ ¼ 1, #R = 76 30 50 29.29 ± 0.25 28.75 ± 0.18 3.95 ± 0.16 302.34 ± 1.69 2.76

TSK 75 60 79.59 ± 0.36 36.12 ± 0.44 4.01 ± 0.09 220.14 ± 2.92 6.52
#Labels: 4-3-3-3 50 60 49.07 ± 1.08 37.05 ± 0.82 4.96 ± 0.21 227.58 ± 4.46 3.13
#Examples = 5070 40 60 38.01 ± 0.76 36.38 ± 0.60 4.37 ± 0.29 237.74 ± 2.83 4.15
/ ¼ 0:5, #R = 120 30 50 28.64 ± 0.24 31.46 ± 0.18 4.83 ± 0.12 281.26 ± 1.15 3.08

Table 15
dwall ¼ 50 cm;vmax ¼ 60 cm=s; weights = (0.89,0.10, 0.01); #Labels: 4-3-3-3j9-9 (COR and WCOR), 4-2-3-2j9-9 (HSWLR), and 4-3-3-3 (TSK); #rules: 88 (COR), 81 (WCOR), 76
(HSWLR), and 120 (TSK).

Method Dist. (cm) Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

Environment: autolab
COR 56.88 ± 0.91 25.69 ± 0.79 10.79 ± 0.21 587.96 ± 39.72 9.62
WCOR 52.97 ± 1.10 33.47 ± 0.89 7.12 ± 0.52 455.98 ± 41.60 5.33
HSWLR 51.50 ± 0.34 23.50 ± 0.97 3.05 ± 0.14 618.40 ± 20.98 5.00
TSK 51.87 ± 2.99 33.05 ± 1.33 4.61 ± 0.11 465.56 ± 15.33 4.38

Environment: office
COR 55.97 ± 1.65 32.48 ± 0.90 4.06 ± 0.28 457.58 ± 15.00 8.13
WCOR 54.59 ± 1.10 33.13 ± 0.97 6.76 ± 0.53 448.16 ± 10.36 6.82
HSWLR 53.43 ± 1.22 24.69 ± 0.66 3.73 ± 0.11 594.74 ± 13.16 6.62
TSK 53.75 ± 0.97 34.26 ± 0.65 5.24 ± 0.22 432.38 ± 10.48 5.95

Environment: mapunet
COR 49.11 ± 1.98 19.75 ± 1.72 7.64 ± 0.50 318.28 ± 15.21 4.83
WCOR 47.90 ± 2.17 24.36 ± 1.39 7.51 ± 0.46 258.72 ± 16.76 5.45
HSWLR 42.43 ± 3.30 14.99 ± 1.85 4.45 ± 0.42 410.62 ± 18.81 11.31
TSK 46.80 ± 2.58 22.14 ± 2.71 6.67 ± 0.88 260.50 ± 7.79 6.67

Environment: hospital
COR 54.12 ± 0.92 35.63 ± 0.77 6.95 ± 0.28 2864.92 ± 45.27 6.15
WCOR 55.26 ± 1.01 33.71 ± 0.14 6.52 ± 0.12 3073.98 ± 23.63 7.36
HSWLR 54.60 ± 1.65 25.07 ± 0.49 3.89 ± 0.06 4209.68 ± 166.14 7.63
TSK 54.50 ± 1.49 34.31 ± 0.32 5.01 ± 0.11 3053.74 ± 123.72 6.62

M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493 1485

Fig. 3. Path of the robot in environment mapunet for the controller WCOR (#Labels: 4-3-3-3j9-9, #Examples = 5070, / ¼ 0:3, #R = 81).

7 The associated video can be downloaded from http://www.gsi.dec.usc.es/
mucientes/videos/wallfollowing_mapunet_eswa09.avi.

1486 M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493
rithm and each environment. Then, we have added the ranks over
all the environments. For COR, WCOR and TSK, it can be observed
that the worst error corresponds to the combination of weights
that gives a higher value to the less important objective (orienta-
tion). For the same reason, the first combination of weights obtains
the second worst error. The other two combinations give a very
low weight to the orientation. Also both of them have a high
weight for the distance. Thus, both combinations get good values
of the distance. However, due to the low weight in velocity, the last
combination has obtained very low average speeds. The pattern
followed by HSWLR is completely different from the other meth-
ods. That, shows again the difficulties in obtaining a good control-
ler under this paradigm.

It is important to notice that the higher the weight of the dis-
tance, the higher the number of rules. The reason is that it is much
more difficult to control a correct distance to the wall than a high
speed. So, controllers that have been learned with a low weight in
distance are simpler and their performance is lower. Nevertheless,
this effect has a limit if the weight of the velocity is low. On the
contrary, we should hope that a higher weight in velocity (lower
weight in distance) would obtain higher average velocities. This
is partially true, as in some cases due to the simplicity in the con-
trol of the distance the controller cannot take advantage of a better
control in velocity.

4.1.5. dwall and vmax

All the knowledge bases have been learned with dwall ¼ 50 and
vmax ¼ 60. Nevertheless, a final user could change these parameters
for the execution of a controller on the robot. So, if the controller is
learned with the mentioned values, how is accuracy affected exe-
cuting the controller with different values for dwall and vmax? The
analysis is shown in Tables 12–14. In most of the tests, perfor-
mance is not affected, reflecting the high robustness of the learning
framework. There are a couple of exceptions in environment wsc8a
for dwall ¼ 75, where distance takes higher values than the refer-
ence, but also with very high average values in speed.

Finally, we have chosen another four environments to test more
in deep the selected controller for each of the learning algorithms.
These environments have paths with a higher length, and with a
structure like floor plans of buildings. They are autolab, office, mapu-
net (this environment is furnished) and hospital. Results are shown
in Table 15. As we are interested in the performance of the control-
lers in all the environments, we have added the errors of each con-
troller in the four environments, obtaining the following results:
TSK (23.62), WCOR (24.96), COR (28.73) and HSWLR (30.56). Never-
theless, the error is a parameter that gives an approximation of the
performance of a controller, but sometimes that performance must
be analyzed in more detail. The only way to really evaluate the per-
formance is by visual inspection of the movement of the robot.

Figs. 3 and 4 show the path of the robot along environments
mapunet and hospital for the WCOR controller. Each red square
indicates the position of the robot each six control cycles. The high-
er the concentration of marks, the lower the linear velocity of the
robot. Environment mapunet (Fig. 3)7 is the floor plan of a furnished
apartment. The path that the robot has to follow is really complex, as
there are several deadlocks in which the robot has to turn on its own,
very narrow passageways, and obstacles with irregular shapes. One
of the particularities of this environment is that in some narrow
areas the robot cannot follow the wall at the reference distance, be-
cause this would get it into a collision with the left wall. Thus, all the
average distances are under dwall.

Environment hospital (Fig. 4) represents the floor plan of a hos-
pital. The robot has to follow a path of more than one kilometer
long, with more than 150 corners, and has to cross more than 40
doors (Table 2). The performance of COR, WCOR and TSK is very
similar, while the HSWLR approach obtains a much lower average
speed.

4.1.6. Final comments on accuracy and interpretability
In summary, from the accuracy point of view, we can conclude

that the performance of the learned controllers is, in general, good
for the different algorithms and combinations of values in the
parameters. The study about the dependencies of accuracy with
the values of the design parameters reflects that the learning
framework is quite sensible to the weights in SF (Eq. (1)) as with
these weights we are defining the behavior to be learned. Also,
the granularity of the most important input variables influences
the accuracy of the controllers, although in a lower degree. On
the other hand, the number of examples and the value of / do
not affect the performance if they take values in a reasonable
range.

The interpretability of each of the learning algorithms has been
described in Section 3. In this section, we have analyzed the num-
ber of rules, as a higher number reduces interpretability. Of course,
the number of labels is the parameter that influences more the
number of rules. Moreover, the value of / allows to reduce the
number of rules, increasing interpretability. Also, a higher number
of examples slightly improves interpretability. Finally, the weights
of SF also modify the number of rules: the higher the weights of the
most complex (difficult to control) variables, the higher the num-

http://www.gsi.dec.usc.es/mucientes/videos/wallfollowing_mapunet_eswa09.avi
http://www.gsi.dec.usc.es/mucientes/videos/wallfollowing_mapunet_eswa09.avi

 60

 70

 80

 90

 100

 110

 120

 130

 140

 4 4.5 5 5.5 6 6.5 7

R

ul
es

Error

 COR WCOR

 HSWLR

 TSK

Fig. 5. Average values of the most accurate results for each environment and
learning method for the wall-following behavior.

Fig. 6. Approximate path followed by a Pioneer II AT robot in a real environment.

Fig. 4. Path of the robot in environment hospital for the controller WCOR (#Labels:
4-3-3-3j9-9, #Examples = 5070, / ¼ 0:3, #R = 81).

Table 16
Real robot. dwall ¼ 50 cm;vmax ¼ 60 cm=s; weights = (0.89,0.10, 0.01); #Labels: 4-3-3-
3j9-9 (COR and WCOR), 4-2-3-2j9-9 (HSWLR), and 4-3-3-3 (TSK); #rules: 88 (COR), 81
(WCOR), 76 (HSWLR), and 120 (TSK).

Method Dist. (cm) Vel. (cm/s) Vel.ch. (cm/s) Time (s) Error

COR 44.64 ± 3.76 25.04 ± 0.33 5.26 ± 0.25 124.13 ± 13.07 8.32
WCOR 50.04 ± 2.29 26.39 ± 0.99 6.78 ± 0.05 114.23 ± 7.04 3.40
HSWLR 46.79 ± 0.76 18.03 ± 0.42 4.05 ± 0.30 153.70 ± 7.50 7.09
TSK 46.74 ± 0.37 27.00 ± 0.61 7.28 ± 0.04 118.91 ± 7.92 6.23

M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493 1487
ber of rules, although the interaction among variables must also be
taken into account.

Fig. 5 shows the trade-off between the error and the number of
rules for each of the data-driven learning algorithms. For each com-
bination of parameters and each environment, the best controller of
each methodology was selected. Then, the average value of the error
was calculated and represented against the number of rules. The gra-
phic proves that, although TSK is the most accurate method, the
number of rules is really high. Nevertheless, WCOR obtains a similar
accuracy, but with a much more reduced rule base. Therefore, we can
conclude that WCOR is the algorithm with the best accuracy/inter-
pretability trade-off for the learning framework.
4.1.7. Real robot
As has been mentioned, on the real robot the sensory informa-

tion is provided by a laser range finder heading to the front of the
robot. This configuration covers 180� and not the whole surround-
ing. The practical implication of this configuration is that in the
convex corners the robot fails to detect the wall that was following
earlier, and has to look for the next wall ‘‘blindly” during a higher
number of control cycles.

Table 16 shows the results of the tests on the real robot. The
average values and standard deviations have been calculated along
three laps. WCOR clearly outperforms the other methodologies,
obtaining the best distance, and the second fastest speed (only
TSK improves that velocity). Although TSK is faster, the time spent
per lap is higher than WCOR. The reason is that the trajectory
implemented by the robot is not the same, as the average distance
is different and, also, the path of the robot along a straight wall is
not always rectilinear, but sinuous (depending on the accuracy of

Fig. 7. Reconstruction of the path of a Pioneer II AT robot in a real environment.

1488 M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493
the controller) due to the existence of closed doors that slightly
modify the distance to the wall in a few centimeters.

Results on the real robot clearly fulfill one of the requisites that
the learning framework should have: the controllers, that have
been learned off-line, can run on the real robot with a good perfor-
mance and without any tuning stage. Moreover, the four selected
learning methodologies obtain good accuracies.

Fig. 6 shows the approximate path followed by the robot in the
real environment8. During the test, all the doors of the floor plan
were closed. Due to the existence of odometry errors, the real trace
8 The associated video can be downloaded from http://www.gsi.dec.usc.es/
mucientes/videos/wallfollowing_realrobot_eswa09.wmv.
of the robot in real environments cannot be reproduced as a whole.
Nevertheless, in order to show in a realistic way the performance of
the robot, Fig. 7 shows some snapshots along the path9. Each of them
represents an occupancy grid map of the environment, together with
the trajectory of the robot along 50 control cycles (initial position in
red and final position in green) and the laser range scanner measure-
ments (displayed in violet). The snapshots have been obtained in the
points of the path labeled in Fig. 6. The grid map has different gray
levels, reflecting the probability of being occupied by an obstacle
or free (walls appear in black).
9 For small displacements of the robot, odometry errors are not significant.

http://www.gsi.dec.usc.es/mucientes/videos/wallfollowing_realrobot_eswa09.wmv
http://www.gsi.dec.usc.es/mucientes/videos/wallfollowing_realrobot_eswa09.wmv

Table 17
Trajectory: zigzag, weights = (1000,60, 4), #Examples = 6435.

Method labels / #Rules dd (cm) ddev (�) Rvc Error

COR 3-5-3-3j9-9 0.0 135 33.98 ± 1.70 20.79 ± 0.76 5.45 ± 0.74 32.66
0.1 118 31.36 ± 0.47 24.42 ± 0.38 4.85 ± 0.27 30.67
0.2 108 29.95 ± 0.65 21.52 ± 0.44 6.14 ± 0.44 29.11
0.3 121 34.14 ± 0.51 22.20 ± 0.55 5.13 ± 0.54 32.95
0.4 95 43.57 ± 2.46 23.25 ± 1.44 6.10 ± 0.13 41.54
0.5 104 35.46 ± 0.68 21.14 ± 0.67 6.51 ± 0.43 34.03

WCOR 3-5-3-3j9-9 0.0 134 31.09 ± 0.19 20.65 ± 0.55 6.53 ± 0.12 30.05
0.1 127 31.81 ± 0.15 20.93 ± 0.15 5.70 ± 0.17 30.72
0.2 120 29.26 ± 0.16 21.07 ± 0.18 5.42 ± 0.19 28.44
0.3 104 27.22 ± 0.39 20.19 ± 0.22 6.10 ± 0.29 26.52
0.4 95 30.25 ± 0.54 20.84 ± 0.81 6.07 ± 0.51 29.31
0.5 94 29.55 ± 0.14 19.65 ± 0.40 5.83 ± 0.33 28.56

HSWLR 3-5-3-3j9-9 0.5 136 33.11 ± 1.44 21.13 ± 0.48 5.67 ± 0.49 31.91
0.6 135 32.21 ± 0.40 21.12 ± 0.64 5.86 ± 0.24 31.10
0.7 136 31.80 ± 0.25 21.09 ± 0.32 6.08 ± 0.17 30.73
0.8 136 32.11 ± 0.20 21.16 ± 0.56 6.14 ± 0.47 31.02
0.9 135 33.33 ± 0.59 21.00 ± 0.72 5.72 ± 0.27 32.10
1.0 136 31.98 ± 0.47 20.91 ± 0.56 5.90 ± 0.36 30.87

TSK 3-5-3-3 0.5 183 23.21 ± 1.39 17.51 ± 0.64 17.12 ± 1.48 22.64
0.6 185 30.96 ± 5.38 18.66 ± 1.73 7.95 ± 1.03 29.73
0.7 164 33.57 ± 1.75 19.71 ± 0.88 9.48 ± 1.02 32.18
0.8 176 34.90 ± 1.27 18.14 ± 0.68 10.38 ± 0.95 33.22
0.9 175 23.19 ± 1.59 18.76 ± 1.29 17.21 ± 0.84 22.75
1.0 174 37.86 ± 2.52 19.78 ± 1.24 11.93 ± 1.31 36.05

Table 18
Trajectory: chicane, weights = (1000,60, 4), #Examples = 6435.

Method labels / #Rules dd (cm) ddev (�) Rvc Error

COR 3-5-3-3j9-9 0.0 135 10.94 ± 0.40 4.60 ± 0.18 7.61 ± 0.35 10.31
0.1 118 11.46 ± 0.29 5.00 ± 0.11 5.59 ± 0.41 10.81
0.2 108 10.53 ± 0.14 3.88 ± 0.07 8.92 ± 0.24 9.87
0.3 121 7.19 ± 0.34 5.56 ± 0.09 6.37 ± 0.14 7.03
0.4 95 12.14 ± 0.76 4.48 ± 0.09 5.37 ± 0.30 11.37
0.5 104 9.27 ± 0.44 4.46 ± 0.08 5.40 ± 0.25 8.79

WCOR 3-5-3-3j9-9 0.0 134 10.57 ± 0.78 4.68 ± 0.06 7.45 ± 0.69 9.98
0.1 127 10.40 ± 0.27 4.94 ± 0.06 7.06 ± 0.47 9.85
0.2 120 10.04 ± 0.28 4.41 ± 0.12 6.65 ± 0.21 9.48
0.3 104 10.52 ± 0.22 4.55 ± 0.04 6.96 ± 0.56 9.92
0.4 95 9.94 ± 0.37 4.52 ± 0.08 5.94 ± 0.32 9.40
0.5 94 10.46 ± 0.40 4.56 ± 0.04 5.72 ± 0.28 9.87

HSWLR 3-5-3-3j9-9 0.5 136 10.99 ± 0.18 4.01 ± 0.08 6.89 ± 0.32 10.29
0.6 135 11.06 ± 0.33 4.11 ± 0.16 6.24 ± 0.55 10.37
0.7 136 11.41 ± 0.34 3.96 ± 0.07 6.11 ± 0.41 10.67
0.8 136 11.23 ± 0.47 3.99 ± 0.32 6.37 ± 0.27 10.51
0.9 135 11.23 ± 0.49 4.10 ± 0.11 6.25 ± 0.52 10.52
1.0 136 11.23 ± 0.34 4.04 ± 0.16 6.38 ± 0.17 10.51

TSK 3-5-3-3 0.5 183 10.49 ± 0.91 4.11 ± 0.36 9.74 ± 0.84 9.85
0.6 185 18.06 ± 2.56 4.20 ± 0.28 12.76 ± 2.13 16.67
0.7 164 14.02 ± 3.79 4.75 ± 0.26 15.23 ± 2.41 13.09
0.8 176 11.33 ± 1.79 5.06 ± 1.03 9.09 ± 2.25 10.70
0.9 175 10.94 ± 0.51 5.49 ± 0.42 12.97 ± 1.61 10.40
1.0 174 13.28 ± 2.63 4.99 ± 0.08 9.29 ± 1.95 12.45

M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493 1489
4.2. Moving object following behavior

The objective of this section is to prove that the framework to
learn behaviors is also valid for other behaviors, and other robots
with different drive configurations and sensors. For this reason
we will only analyze the performance of the controllers in five
different situations, but without modifying the number of labels,
the number of examples and the weights. One hundred and
twenty tests have been done using the Nomad 200 robot simula-
tion software. The Nomad 200 robot is equipped with a ring of
16 ultrasound sensors uniformly distributed. The robot has syn-
chronous drive, thus the three wheels point always in the same
direction. With this configuration the robot is able to turn on its
track.

Tables 17–21 show the results obtained for five different types
of trajectories of the moving object: zigzag, chicane, loop, spiral and
zigzag–chicane. In all the experiments the robot has to follow the
moving object at a distance of dref ¼ 150 cm and with an angle of
dev ref ¼ 0. Each row of the tables shows the results of a learned
controller. In order to evaluate the quality of the controllers we
have measured three different indicators:

� dd ¼ jd� dref j: error in the distance.
� ddev ¼ jdev � dev ref j: error in the angle.

Table 19
Trajectory: loop, weights = (1000,60, 4), #Examples = 6435.

Method labels / #Rules dd (cm) ddev (�) Rvc Error

COR 3-5-3-3j9-9 0.0 135 28.98 ± 0.43 9.68 ± 0.10 5.68 ± 1.02 27.05
0.1 118 26.36 ± 0.29 10.08 ± 0.13 6.99 ± 0.31 24.73
0.2 108 28.42 ± 0.30 9.19 ± 0.16 8.75 ± 0.79 26.50
0.3 121 33.21 ± 0.20 10.80 ± 0.20 4.29 ± 0.36 30.97
0.4 95 43.22 ± 1.16 10.88 ± 0.17 5.07 ± 0.30 39.99
0.5 104 33.82 ± 0.57 10.25 ± 0.20 4.58 ± 0.50 31.46

WCOR 3-5-3-3j9-9 0.0 134 33.93 ± 0.86 9.89 ± 0.16 5.03 ± 0.95 31.53
0.1 127 25.29 ± 0.68 9.27 ± 0.12 5.87 ± 0.45 23.69
0.2 120 27.56 ± 0.32 9.47 ± 0.08 6.23 ± 0.75 25.75
0.3 104 26.49 ± 0.25 9.54 ± 0.22 7.53 ± 0.63 24.80
0.4 95 28.24 ± 0.60 9.76 ± 0.14 5.17 ± 0.32 26.39
0.5 94 27.01 ± 0.38 9.50 ± 0.09 5.43 ± 0.65 25.26

HSWLR 3-5-3-3j9-9 0.5 136 27.73 ± 0.33 9.53 ± 0.11 6.42 ± 0.67 25.91
0.6 135 27.33 ± 0.27 9.60 ± 0.11 5.95 ± 0.20 25.56
0.7 136 27.32 ± 0.29 9.52 ± 0.04 5.94 ± 0.63 25.54
0.8 136 27.68 ± 0.40 9.54 ± 0.09 5.88 ± 0.29 25.87
0.9 135 29.18 ± 0.20 9.64 ± 0.11 6.03 ± 0.27 27.23
1.0 136 27.26 ± 0.33 9.54 ± 0.12 5.73 ± 0.28 25.49

TSK 3-5-3-3 0.5 183 32.64 ± 5.18 12.52 ± 0.60 13.81 ± 1.14 30.63
0.6 185 17.39 ± 1.55 11.29 ± 0.17 6.84 ± 0.98 16.78
0.7 164 20.91 ± 1.09 14.17 ± 0.89 15.16 ± 1.77 20.24
0.8 176 25.36 ± 6.01 11.06 ± 1.12 7.69 ± 1.09 23.93
0.9 175 18.01 ± 6.39 9.68 ± 3.11 14.53 ± 2.82 17.18
1.0 174 20.83 ± 2.75 10.61 ± 1.37 14.38 ± 0.92 19.81

Table 20
Trajectory: spiral, weights = (1000,60, 4), #Examples = 6435.

Method labels / #Rules dd (cm) ddev (�) Rvc Error

COR 3-5-3-3j9-9 0.0 135 26.40 ± 4.92 8.58 ± 4.00 7.41 ± 2.62 24.62
0.1 118 22.17 ± 0.31 7.09 ± 0.08 7.79 ± 0.82 20.66
0.2 108 23.37 ± 0.48 6.38 ± 0.09 12.71 ± 1.41 21.67
0.3 121 24.28 ± 0.30 7.60 ± 0.10 4.63 ± 0.29 22.61
0.4 95 33.58 ± 0.66 7.72 ± 0.17 6.10 ± 0.13 30.99
0.5 104 26.57 ± 0.88 7.25 ± 0.11 5.33 ± 0.45 24.64

WCOR 3-5-3-3j9-9 0.0 134 28.01 ± 0.29 6.88 ± 0.10 7.82 ± 0.16 25.90
0.1 127 21.33 ± 0.43 6.44 ± 0.06 7.11 ± 0.42 19.84
0.2 120 22.48 ± 0.20 6.60 ± 0.17 8.80 ± 0.36 20.89
0.3 104 22.11 ± 0.16 6.52 ± 0.08 9.76 ± 0.42 20.55
0.4 95 23.05 ± 0.21 6.75 ± 0.05 6.95 ± 0.57 21.42
0.5 94 22.06 ± 0.35 6.55 ± 0.11 7.28 ± 0.38 20.51

HSWLR 3-5-3-3j9-9 0.5 136 23.29 ± 0.09 6.60 ± 0.11 7.74 ± 0.94 21.62
0.6 135 22.88 ± 0.28 6.63 ± 0.08 6.78 ± 0.61 21.26
0.7 136 22.92 ± 0.19 6.64 ± 0.06 7.44 ± 0.51 21.29
0.8 136 22.97 ± 0.47 6.66 ± 0.06 7.53 ± 0.64 21.34
0.9 135 24.45 ± 0.32 6.81 ± 0.14 7.15 ± 1.13 22.69
1.0 136 22.72 ± 0.26 6.62 ± 0.08 6.95 ± 0.52 21.11

TSK 3-5-3-3 0.5 183 26.09 ± 2.50 9.39 ± 0.52 18.38 ± 1.52 24.42
0.6 185 13.81 ± 0.97 7.87 ± 0.28 4.69 ± 0.90 13.22
0.7 164 18.56 ± 3.77 10.50 ± 1.63 17.75 ± 2.90 17.75
0.8 176 22.02 ± 1.93 8.68 ± 0.57 9.51 ± 0.63 20.69
0.9 175 13.11 ± 4.21 7.27 ± 0.39 16.03 ± 0.49 12.53
1.0 174 15.82 ± 0.64 6.77 ± 0.75 19.32 ± 0.94 14.92

1490 M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493
� Rvc ¼ vcrþ1
vcmþ1: relative velocity change, where vcr and vcm are the

average velocity changes for the robot and the moving object
respectively.

The results presented in the tables are the average and standard
deviation values over five executions of the average values of the
indicators over one execution. Again, we have added a new column
to represent with a numerical value a possible definition of the er-
ror of a controller:
error ¼ 0:9 � ddþ 0:1 � ddev ð17Þ
For each data-driven algorithm in a table (Tables 17–21) the lowest
error (best accuracy) has been marked in bold face. Moreover, in
Figs. 8 and 9 the paths of the robot and the moving object for meth-
od TSK and / ¼ 0:5 are shown for traces spiral (Table 20) and zig-
zag–chicane (Table 21). The trajectories are represented by
circular marks, and the higher the concentration of marks, the lower
the speed. In order to visualize adequately both trajectories, the
path of the robot has been shifted along the x-axis (Fig. 8) and the
y-axis (Fig. 9). For example, in Fig. 8, the starting point of the robot
ðArÞ and the moving object ðAmÞ have the same y coordinate (as can
be seen in the figure), but the x coordinate of the robot should be
1.5 m ðdref Þ under the moving object x coordinate. The circular

Table 21
Trajectory: zigzag–chicane, weights = (1000, 60,4), #Examples = 6435

Method labels / #Rules dd (cm) ddev (�) Rvc Error

COR 3-5-3-3j9-9 0.0 135 28.82 ± 0.15 18.27 ± 0.14 5.49 ± 0.14 27.77
0.1 118 27.70 ± 0.24 21.09 ± 0.44 5.04 ± 0.14 27.04
0.2 108 25.51 ± 0.87 18.86 ± 0.31 5.98 ± 0.21 24.85
0.3 121 28.07 ± 0.32 19.18 ± 0.40 4.72 ± 0.47 27.18
0.4 95 30.72 ± 2.13 18.48 ± 0.42 5.73 ± 0.37 29.50
0.5 104 27.21 ± 0.37 18.42 ± 0.14 5.99 ± 0.20 26.33

WCOR 3-5-3-3j9-9 0.0 134 26.33 ± 0.32 18.28 ± 0.32 6.10 ± 0.24 25.53
0.1 127 27.41 ± 0.46 18.38 ± 0.45 5.69 ± 0.35 26.51
0.2 120 25.50 ± 0.29 18.02 ± 0.18 5.88 ± 0.38 24.75
0.3 104 23.62 ± 0.45 17.84 ± 0.11 5.65 ± 0.39 23.04
0.4 95 25.80 ± 0.34 17.88 ± 0.20 6.02 ± 0.25 25.01
0.5 94 25.13 ± 0.39 17.83 ± 0.27 5.68 ± 0.24 24.40

HSWLR 3-5-3-3j9-9 0.5 136 27.83 ± 0.51 18.27 ± 0.48 6.46 ± 0.20 26.87
0.6 135 28.01 ± 0.59 18.29 ± 0.40 6.33 ± 0.18 27.04
0.7 136 27.61 ± 0.48 18.47 ± 0.56 6.48 ± 0.37 26.70
0.8 136 27.75 ± 0.65 18.37 ± 0.41 6.36 ± 0.37 26.81
0.9 135 27.91 ± 0.57 18.00 ± 0.12 6.08 ± 0.29 26.92
1.0 136 28.11 ± 0.48 18.05 ± 0.42 6.31 ± 0.27 27.10

TSK 3-5-3-3 0.5 183 20.43 ± 1.88 15.38 ± 0.74 13.49 ± 0.19 19.93
0.6 185 26.96 ± 5.35 14.98 ± 1.04 6.92 ± 0.58 25.76
0.7 164 33.55 ± 1.07 17.65 ± 0.67 9.96 ± 1.42 31.96
0.8 176 33.76 ± 0.30 15.65 ± 0.44 8.37 ± 0.59 31.95
0.9 175 22.22 ± 0.94 17.81 ± 0.51 13.47 ± 0.68 21.78
1.0 174 35.47 ± 2.27 16.73 ± 0.66 9.26 ± 0.32 33.60

Fig. 8. Robot following a moving object with spiral-like trajectory.

M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493 1491
marks that represent the trajectories have a frequency of two con-
trol cycles between them. Also, in Fig. 9 the x coordinate of the robot
at the starting point ðArÞ is the real one, but the y coordinate should
be the same as the y coordinate of the starting point of the moving
object ðAmÞ.

To analyze the accuracies of the controllers for this behavior, it
should be taken into account that the difficulty in placing the robot
in the objective position is very high, as this objective position
changes with the movement of the object. Moreover, the moving
object frequently changes its linear velocity and heading direction,
making impossible to obtain low values of dd and ddev . Both the
robot and the moving object have the same kinematic characteris-
tics. This means that if the moving object accelerates suddenly and
reaches the highest speed, the robot will be unable to catch it. The
practical implication is that in a situation like this, the errors in dis-
tance have to be always clearly over zero. The characteristics of the
traces followed by the moving object are shown in Table 22.

Errors (Tables 17–21) show that if we choose the best represen-
tative of each learning methodology, and we compare that repre-
sentative with the other representatives in the table, the best
performance is always obtained by a TSK controller. The ranking
in accuracy continues with WCOR, COR, and finally HSWLR. This
occurs in all the traces but chicane, which is the easiest one. In that
trace the values of the error are, in general, very low and the differ-
ences among methodologies are not meaningful. Also, the analysis
of the influence of parameter / over the error showed again that
there was not a pattern that indicated a better / value. Thus, if /
takes values in that interval, performance is not affected
significantly.

Fig. 10 shows the trade-off between the average values of the
error and the number of rules of each of the data-driven learning
algorithms. Again, the graphic proves that, although TSK is the
most accurate method, the number of rules is really high. For this
behavior, the differences in the performance of TSK and WCOR are
higher, but the same happens with the number of rules. We can
conclude that WCOR is the most complete algorithm, with good
accuracy and the lowest number of rules.

4.3. General rules for the design of behaviors

Once the study on the data-driven algorithms and the influence
in the values of the parameters has been analyzed, it would be
interesting to extract some general rules for the design of behav-
iors under the learning framework. We can point out the following:

� Three of the data-driven algorithms (COR, WCOR and TSK)
obtain consistently a very good performance. If the designer
requires high interpretability, COR should be selected. On the

Fig. 9. Robot following a moving object with zigzag–chicane-like trajectory.

 100

 120

 140

 160

 180

 200

 16 18 20 22 24

R

ul
es

Error

 COR
 WCOR

 HSWLR

 TSK

Fig. 10. Average values of the most accurate results for each environment and
learning method for the moving object following behavior.

Table 22
Characteristics of the traces of the moving object.

Trace Max.
speed

Max. speed
changes

Max. heading
changes

Difficulty

zigzag Medium None Very strong Very high
chicane High Strong Strong Medium
loop High Medium Medium High
spiral High Strong Medium High
zigzag–chicane High Strong Very strong Very high

1492 M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493
other hand, if accuracy is the main goal, TSK is the best candi-
date. Nevertheless, WCOR is the algorithm with the better
trade-off between accuracy and interpretability.

� The granularities of the universes of discourse of the input vari-
ables are of great importance not only from the interpretability
point of view (the higher the granularities, the higher the num-
ber of rules), but also for accuracy. In particular, accuracy is very
sensible to the number of labels of the most significant input
variables.
� The number of training examples, which have been generated
with the dataset generation module, do not have a great influ-
ence on accuracy. Nevertheless a higher number of examples
slightly reduces the number of rules. However, it also increases
the learning time. From our point of view it is not useful to
reduce the number of rules increasing the number of examples,
as we have most adequate parameters to do that. In summary, a
good choice is to try to generate a reduced number of examples.

� The best option to reduce the number of rules is to increase the
value of /, as it does not reduce the accuracy of the controller if
the value is selected in the proposed intervals.

� The performance of the controllers is quite sensible to the values
of the weights in SF (Eq. (1)). A good and very simple solution for
the selection of the values of the weights consists, first, in mak-
ing a ranking of the importance of the input variables. Then, a
weight of one is assigned to the most important variable, and
the next variables take weights ten times lower than the previ-
ous variable. Modifications around these values do not affect
accuracy too much.

5. Conclusions

In this paper we have performed an exhaustive study on a set
of data-driven evolutionary-based algorithms that cover a wide
range of the accuracy/interpretability trade-off. Also, we have
analyzed the influence of some design parameters both in accu-
racy and in the number of rules. The learning framework has
been applied to two different behaviors to prove the applicability
of the methodology for the learning of controllers in mobile
robotics. The number of tests that have been implemented (344
for wall-following and 120 for moving object following behaviors)
both in simulations and on a Pioneer II AT robot show, in general,
very good accuracies for most of the combinations of algorithms
and values of parameters. Taking into account all the analyzed
data, some general rules for the design of behaviors under the
learning framework have been extracted. The reliability of this
design rules is high due to the number of tests, the number of
combinations in the values of the parameters, and the results ob-
tained on the real robot. One of the most interesting aspects of
the methodology is the ability to directly run the learned control-
ler on the real robot. This, together with the fact that the steps for

M. Mucientes et al. / Expert Systems with Applications 37 (2010) 1471–1493 1493
the design of behaviors have been clearly established, will facili-
tate the implementation of controllers in the growing field of ser-
vice robots.
References

Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O., & Herrera, F. (2006). Hybrid learning
models to get the interpretability-accuracy trade-off in fuzzy modelling. Soft
Computing, 10(9), 717–734.

Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O., & Herrera, F. (2007). Local
identification of prototypes for genetic learning of accurate TSK fuzzy
rule-based systems. International Journal of Intelligent Systems, 22(9),
909–941.

Alcalá, R., Cano, J., Cordón, O., Herrera, F., Villar, P., & Zwir, I. (2003). Linguistic
modeling with hierarchical systems of weighted linguistic rules. International
Journal of Approximate Reasoning, 32(2–3), 187–215.

Alcalá, R., Casillas, J., Cordón, O., & Herrera, F. (2002). Improving simple linguistic
fuzzy models by means of the weighted COR methodology. In Proceedings of the
8th Ibero-American conference (AI) on advances in artificial intelligence –
IBERAMIA 2002. LNAI (Vol. 2527, pp. 294–302). Sevilla, Spain: Springer-Verlag.

Angle, C. (2008). Home robot explosion. PC Magazine. <http://blogs.spectrum.ieee.
org/automaton/2008/01/14/irobot_founder_on_the_next_25.html> (January
2008).

Bäck, T. (1996). Evolutionary algorithms in theory and practice. Oxford University
Press.

Beom, H. R., & Cho, H. S. (1995). A sensor-based navigation for a mobile robot using
fuzzy logic and reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics, 25(3), 464–477.

Berlanga, A., Sanchis, A., Isasi, P., & Molina, J. M. (2000). A general learning co-
evolution method to generalize autonomous robot navigation behavior. In
Proceedings of the congress on evolutionary computation, La Jolla, CA (USA) (pp.
769–776).

Bonarini, A. (1997). Anytime learning and adaptation of structured fuzzy behaviors.
Adaptive Behavior, 5, 281–315.

Bonissone, P. P., Subbu, R., Eklund, N., & Kiehl, T. R. (2006). Evolutionary
algorithms + domain knowledge = real-world evolutionary computation. IEEE
Transactions on Evolutionary Computation, 10(3), 256–280.

Casillas, J., Cordón, O., de Viana, I. F., & Herrera, F. (2005). Learning cooperative
linguistic fuzzy rules using the best–worst ant system algorithm. International
Journal of Intelligent Systems, 20, 433–452.

Casillas, J., Cordón, O., & Herrera, F. (2002). COR: A methodology to improve ad hoc
data-driven linguistic rule learning methods by inducing cooperation among
rules. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics,
32(4), 526–537.

Casillas, J., Cordón, O., & Herrera, F. (2002). Techniques for constructing intelligent
systems. Different approaches to induce cooperation in fuzzy linguistic models
under the COR methodology. Springer-Verlag.

Casillas, J., Cordón, O., Herrera, F., & Magdalena, L. (Eds.). (2003a). Accuracy
improvements in linguistic fuzzy modeling. Heidelberg, Germany: Springer.

Casillas, J., Cordón, O., Herrera, F., & Magdalena, L. (Eds.). (2003b). Interpretability
issues in fuzzy modeling. Heidelberg, Germany: Springer.

Chen, L.-H., & Chiang, C.-H. (2004). An intelligent control systems with a multi-
objective self-exploration process. Fuzzy Sets and Systems, 143, 275–294.

Cho, J. S., & Park, D. J. (2000). Novel fuzzy logic control based on weighting of
partially inconsistent rules using neural network. Journal of Intelligent Fuzzy
Systems, 8, 99–110.

Cordón, O., del Jesus, M., Herrera, F., & Lozano, M. (1999). Mogul: A methodology to
obtain genetic fuzzy rule-based systems under the iterative rule learning
approach. International Journal of Intelligent Systems, 14(9), 1123–1153.

Cordón, O., & Herrera, F. (1999). A two-stage evolutionary process for designing tsk
fuzzy rule-based systems. IEEE Transactions on Systems, Man, and Cybernetics –
Part B: Cybernetics, 29(6), 703–715.

Cordón, O., & Herrera, F. (2001). Hybridizing genetic algorithms with sharing
scheme and evolution strategies for designing approximate fuzzy rule-based
systems. Fuzzy Sets and Systems, 118(2), 235–255.

Cordón, O., Herrera, F., Hoffmann, F., & Magdalena, L. (2001). Genetic fuzzy systems:
Evolutionary tuning and learning of fuzzy knowledge bases. Singapore: World
Scientific.

Dahl, T., & Giraud-Carrier, C. (2004). Evolution-inspired incremental development of
complex autonomous intelligence. In Proceeding of the 8th international
conference on intelligent autonomous systems (IAS) (pp. 395–402). The
Netherlands: Amsterdam.

Floreano, D., & Mondada, F. (1998). Evolutionary neurocontrollers for autonomous
mobile robots. Neural Networks, 11, 1461–1478.

Fuller, R. (2000). Introduction to neuro-fuzzy systems. Heidelberg, Germany:
Springer-Verlag.

Gerkey, B., Vaughan, R., & Howard, A. (2003). The player/stage project: Tools for
multi-robot and distributed sensor systems. In Proceedings of the 11th
international conference on advanced robotics (ICAR), Coimbra (Portugal) (pp.
317–323).

Gu, D., Hu, H., Reynolds, J., & Tsang, E. (2003). Ga-based learning in behaviour based
robotics. In Proceedings of the IEEE international symposium on computational
intelligence in robotics and automation, Kobe (Japan) (pp. 1521–1526).
Gu, D., Hu, H., & Spacek, L. (2003). Learning fuzzy logic controller for reactive robot
behaviours. In Proceedings of the IEEE/ASME international conference on advanced
intelligent mechatronics (AIM 2003) (pp. 46–51).

Hagras, H., Callaghan, V., & Collin, M. (2004). Learning and adaptation of an
intelligent mobile robot navigator operating in unstructured environment
based on a novel online fuzzy-genetic system. Fuzzy Sets and Systems, 141,
107–160.

Hoffmann, F. (2003). An overview on soft computing in behavior based robotics. In
Proceedings of the IFSA 2003 (pp. 544–551).

Howard, A., & Roy, N. (2003). The robotics data set repository (radish), <http://
www.radish.sourceforge.net>.

Hui, N., Mahendar, V., & Pratihar, D. (2006). Time-optimal collision-free navigation
of a car-like mobile robot using neuro-fuzzy approaches. Fuzzy Sets and Systems,
157, 2171–2204.

Izumi, K., Watanabe, K., & Jin, S.-H. (1999). Obstacle avoidance of mobile robot using
fuzzy behavior-based control with module learning. In Proceedings of the IEEE/
RSJ international conference on intelligent robots and systems (pp. 454–459).

Kalmár, Z., Szepesvári, C., & Lörincz, A. (1998). Module-based reinforcement
learning: Experiments with a real robot. Machine Learning, 31, 55–85.

Katagami, D., & Yamada, S. (2000). Interactive classifier system for real robot
learning. In IEEE international workshop on robot–human interaction (ROMAN-
2000), Osaka (Japan) (pp. 258–263).

Lee, K. J., & Zhang, B. T. (2000). Learning robot behaviors by evolving genetic
programs. In Proceedings of the 26th international conference on industrial
electronics, control and instrumentation (IECON-2000) (Vol. 4, pp. 2867–2872).

Lin, C. K. (2003). A reinforcement learning adaptative fuzzy controller for robots.
Fuzzy Sets and Systems, 137, 339–352.

Miglino, O., Lund, H. H., & Nolfi, S. (1995). Evolving mobile robots in simulated and
real environments. Artificial Life, 2(4), 417–434.

Mucientes, M., & Casillas, J. (2007). Quick design of fuzzy controllers with good
interpretability in mobile robotics. IEEE Transactions on Fuzzy Systems, 15(4),
636–651.

Mucientes, M., Iglesias, R., Regueiro, C. V., Bugarín, A., & Barro, S. (2003). A fuzzy
temporal rule-based velocity controller for mobile robotics. Fuzzy Sets and
Systems, 134, 83–99.

Mucientes, M., Iglesias, R., Regueiro, C. V., Bugarín, A., Cariñena, P., & Barro, S.
(2001). Fuzzy temporal rules for mobile robot guidance in dynamic
environments. IEEE Transactions on Systems, Man, and Cybernetics – Part C:
Applications and Reviews, 31(3), 391–398.

Mucientes, M., Moreno, D. L., Bugarín, A., & Barro, S. (2006). Evolutionary learning of
a fuzzy controller for wall-following behavior in mobile robotics. Soft
Computing, 10(10), 881–889.

Mucientes, M., Moreno, D. L., Bugarín, A., & Barro, S. (2007). Design of a fuzzy
controller in mobile robotics using genetic algorithms. Applied Soft Computing, 7,
540–546.

Nauck, D., Klawonn, F., & Kruse, R. (1997). Fundations of neuro-fuzzy systems. New
York, NY, USA: John Wiley & Sons.

Nelson, A. L., Grant, E., Barlow, G., & White, M. (2003). Evolution of complex
autonomous robot behaviors using competitive fitness. In Proceedings of the
IEEE international conference on integration of knowledge intensive multi-agent
systems, Boston (USA) (pp. 145–150).

Nozaki, K., Ishibuchi, H., & Tanaka, H. (1997). A simple but powerful heuristic
method for generating fuzzy rules from numerical data. Fuzzy Sets and Systems,
86(3), 251–270.

Oh, C. K., & Barlow, G. J. (2004). Autonomous controller design for unmanned aerial
vehicles using multi-objective genetic programming. In Proceedings of the
congress on evolutionary computation, Portland (USA) (pp. 1538–1545).

Pal, N. R., & Pal, K. (1999). Handling of inconsistent rules with an extended model of
fuzzy reasoning. Journal of Intelligent and Fuzzy Systems, 7, 55–73.

Saffiotti, A. (1997). The uses of fuzzy logic in autonomous robot navigation. Soft
Computing, 1(4), 180–197.

Shiah, S.-J., & Young, K.-Y. (2004). Robot motion classification from standpoint of
learning control. Fuzzy Sets and Systems, 144, 285–296.

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its application
to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics,
15(1), 116–132.

Takahashi, Y., & Asada, M. (2003). Multi-layered learning systems for vision-based
behavior acquisition of a real mobile robot. In Proceedings of SICE annual
conference 2003 (pp. 2937–2942).

Thongchai, S. (2002). Behavior-based learning fuzzy rules for mobile robots. In
Proceedings of the American control conference, Anchorage, AK (USA) (pp. 995–
1000).

Tuci, E., Quinn, M., & Harvey, I. (2003). An evolutionary ecological approach to the
study of learning behaviour using a robot based model. Adaptive Behavior, 10(3/
4), 201–221.

Wang, Y., Huber, M., Papudesi, V., & Cook, D. (2003). User-guided reinforcement
learning of robot assistive tasks for an intelligent environment. In Proceedings of
the IEEE/RJS international conference on intelligent robots and systems, Las Vegas
(USA) (pp. 424– 429).

Wang, L.-X., & Mendel, J. (1992). Generating fuzzy rules by learning from examples.
IEEE Transactions on Systems, Man, and Cybernetics, 22(6), 1414–1427.

Yamada, S. (2005). Evolutionary behavior learning for action-based environment
modeling by a mobile robot. Applied Soft Computing, 245–257.

Zhou, C. (2002). Robot learning with ga-based fuzzy reinforcement learning agents.
Information Sciences, 145, 45–68.

http://blogs.spectrum.ieee.org/automaton/2008/01/14/irobot_founder_on_the_next_25.html
http://blogs.spectrum.ieee.org/automaton/2008/01/14/irobot_founder_on_the_next_25.html
http://www.radish.sourceforge.net
http://www.radish.sourceforge.net

	A case study for learning behaviors in mobile robotics by evolutionary fuzzy systems
	Introduction
	A framework to learn behaviors in mobile robotics
	Dataset generation methodology
	Selection of the variables

	Universe of discourse and precision
	Scoring function
	Objective function
	Robot simulation
	Construction of the training set

	Learning fuzzy models with different accuracy/interpretability trade-offs
	COR: the COR methodology
	WCOR: the weighted COR methodology
	HSWLR: Hierarchical Systems of Weighted Linguistic Rules
	TSK: local evolutionary learning of Takagi–Sugeno rules
	Local process for identifying prototypes
	Post-processing stage

	Results
	Wall-following behavior
	Number of labels
	Number of examples
	 \phi value
	Weights in the scoring function
	{d}_{wall} and {\gulliverv}_{{\it max}}
	Final comments on accuracy and interpretability
	Real robot

	Moving object following behavior
	General rules for the design of behaviors

	Conclusions
	References

